精英家教网 > 高中数学 > 题目详情
5.如图,三棱锥S-ABC中,SA⊥平面ABC,AB=6,BC=12,AC=6$\sqrt{5}$.SB=6$\sqrt{2}$,则三棱锥S-ABC外接球的表面积为216π.

分析 由SA⊥平面ABC,可得SA⊥AB,SA的长度.由于AB2+BC2=AC2,可得∠ABC=90°.可把此三棱锥补成长方体,其外接球的直径为SC的长.

解答 解:∵SA⊥平面ABC,∴SA⊥AB.∴SA=$\sqrt{S{B}^{2}-A{B}^{2}}$=6.
∵AB2+BC2=62+122=180=$(6\sqrt{5})^{2}$=AC2,∴∠ABC=90°
可把此三棱锥补成长方体,其外接球的直径为SC的长.
SC2=SA2+AC2=${6}^{2}+(6\sqrt{5})^{2}$=216,解得SC=$6\sqrt{6}$,
∴2R=6$\sqrt{6}$,解得R=3$\sqrt{6}$.
故所求的外接球的表面积S=4πR2=4π×$(3\sqrt{6})^{2}$=216π.
故答案为:216π

点评 本题考查了三棱锥与长方体的外接球、勾股定理及其逆定理、球的表面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.直线x-y+m=0与圆x2+y2=1相交的一个充分不必要条件是(  )
A.0<m<1B.-4<m<2C.m<1D.-3<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函f(x)=x2-x+1+alnx.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知多面体ABCDEF如图所示,其中ABCD为矩形,△DAE为等腰直角三角形,DA⊥AE,四边形AEFB为梯形,且AE∥BF,∠ABF=90°,AB=BF=2AE=2.
(1)若G为线段DF的中点,求证;EG∥平面ABCD;
(2)线段DF上是否存在一点N,使得直线BN与平面FCD所成角的正弦值等于$\frac{2}{5}$?若存在,请指出点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABA1-DCD1中,${D_1}C=\sqrt{2}a$,DD1=DA=DC=a,点E、F分别是BC、DC的中点.
(Ⅰ)证明:AF⊥ED1
(Ⅱ)求点E到平面AFD1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,依此类推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m≤n,m,n∈N*,则m,n的值分别为(  )
A.m=13,n=20B.m=14,n=20C.m=20,n=20D.m=20,n=30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设n∈N*且sinx+cosx=-1,请归纳猜测sinnx+cosnx的值.(先观察n=1,2,3,4时的值,归纳猜测sinnx+cosnx的值,不必证明.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知点P(1,-2),直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=-2+t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,直线l和曲线C的交点为A,B.
(1)求直线l和曲线C的普通方程;
(2)求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=ax-logax,要使f(x)恒有两个零点,则a的取值范围是(  )
A.(1,e${\;}^{\frac{1}{e}}}$)B.(1,e]C.(1,e2D.(e${\;}^{\frac{1}{e}}}$,e2

查看答案和解析>>

同步练习册答案