精英家教网 > 高中数学 > 题目详情
18.某企业生产甲、乙两种产品均需用A,B两种原料,已知每种产品各生产1吨所需原料及每天原料的可用限额如下表所示,如果生产1吨甲产品可获利润3万元,生产1吨乙产品可获利4万元,则该企业每天可获得最大利润为18万元.
原料限额
A(吨)3212
B(吨)128

分析 设每天生产甲乙两种产品分别为x,y吨,利润为z元,根据题目条件建立约束条件,
得到目标函数,画出约束条件所表示的区域,再利用平移法求出z的最大值.

解答 解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,
则$\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$,
目标函数为 z=3x+4y.
作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{1}{4}$z,
平移直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z
由图象可知当直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z经过点B时,
直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z的截距最大,
此时z最大,
解方程组$\left\{\begin{array}{l}{3x+2y=12}\\{x+2y=8}\end{array}\right.$,解得x=2y=3,
即B的坐标为(2,3),
∴zmax=3x+4y=6+12=18.
即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,
故答案为:18.

点评 本题考查了线性规划的应用问题,建立约束条件和目标函数,利用数形结合是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1+x),x≥0}\\{lo{g}_{\frac{1}{2}}(1-x),x<0}\end{array}\right.$.
(1)判断函数f(x)的奇偶性;
(2)对任意的两个实数x1,x2,求证:当x1+x2>0时,f(x1)+f(x2)>0;
(3)对任何实数x,f(e2x-a)+f(3-2ex)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为4x-3y=0,则双曲线的离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:
及格不及格合计
很少使用手机20626
经常使用手机101424
合计302050
(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1,P2,且P2=0.5,若|P1-P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx-1.
(1)若函数f(x)在区间[1,+∞)上递增,求实数a的取值范围;
(2)求证:ln$\frac{n+1}{n}$<$\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分图象如图所示,则cos(5ωφ)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y=x2,点P(0,2),A、B是抛物线上两个动点,点P到直线AB的距离为1.
(1)若直线AB的倾斜角为$\frac{π}{3}$,求直线AB的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)已知a>0,b>0,a+b=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}≥8$;
(Ⅱ)解不等式:|x-1|+|x+2|≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=|x+1|+|x+a|的最小值为3,则实数a的值为(  )
A.A、B.2C.2或-4D.4或-2

查看答案和解析>>

同步练习册答案