| 甲 | 乙 | 原料限额 | |
| A(吨) | 3 | 2 | 12 |
| B(吨) | 1 | 2 | 8 |
分析 设每天生产甲乙两种产品分别为x,y吨,利润为z元,根据题目条件建立约束条件,
得到目标函数,画出约束条件所表示的区域,再利用平移法求出z的最大值.
解答 解:设每天生产甲乙两种产品分别为x,y吨,利润为z元,
则$\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0}\\{y≥0}\end{array}\right.$,
目标函数为 z=3x+4y.
作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.![]()
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{1}{4}$z,
平移直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z
由图象可知当直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z经过点B时,
直线y=-$\frac{3}{4}$x+$\frac{1}{4}$z的截距最大,
此时z最大,
解方程组$\left\{\begin{array}{l}{3x+2y=12}\\{x+2y=8}\end{array}\right.$,解得x=2y=3,
即B的坐标为(2,3),
∴zmax=3x+4y=6+12=18.
即每天生产甲乙两种产品分别为2,3吨,能够产生最大的利润,最大的利润是18万元,
故答案为:18.
点评 本题考查了线性规划的应用问题,建立约束条件和目标函数,利用数形结合是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 及格 | 不及格 | 合计 | |
| 很少使用手机 | 20 | 6 | 26 |
| 经常使用手机 | 10 | 14 | 24 |
| 合计 | 30 | 20 | 50 |
| P(K2≥K0) | 0.10 | 0.05 | 0.025 | 0.010 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com