【题目】已知椭圆C:()的长轴长是短轴长的2倍,左焦点为.
(1)求C的方程;
(2)设C的右顶点为A,不过C左、右顶点的直线l:与C相交于M,N两点,且.请问:直线l是否过定点?如果过定点,求出该定点的坐标;如果不过定点,请说明理由.
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对数学学习的情况,从该校抽了名学生,分析了这名学生某次数学考试成绩(单位:分),得到了如下的频率分布直方图:
(1)求频率分布直方图中的值;
(2)根据频率分布直方图估计该组数据的中位数(精确到);
(3)在这名学生的数学成绩中,从成绩在的学生中任选人,求次人的成绩都在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数。
(Ⅰ)求函数在区间上的最大值;
(Ⅱ)设在(0,2)内恰有两个极值点,求实数的取值范围;
(Ⅲ)设,方程在区间有解,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3,2)的入射光线 l1
被直线l:y=x反射.反射光线l2交y轴于B点,圆C过点A且与l1, l2 都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设分别是直线l和圆C上的动点,求的最小值及此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.
(Ⅰ)设消费者的年龄为,对该款智能家电的评分为.若根据统计数据,用最小二乘法得到关于的线性回归方程为,且年龄的方差为,评分的方差为.求与的相关系数,并据此判断对该款智能家电的评分与年龄的相关性强弱.
(Ⅱ)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请判断是否有的把握认为对该智能家电的评价与年龄有关.
好评 | 差评 | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:线性回归直线的斜率;相关系数,独立性检验中的,其中.
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com