精英家教网 > 高中数学 > 题目详情
关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,则m的取值范围为(  )
A、∅
B、(-∞,-1)
C、(
3
2
,+∞)
D、(-
19
13
,0)
考点:一元二次方程的根的分布与系数的关系
专题:函数的性质及应用
分析:令f(x)=mx2+2(m+3)x+2m+14,则由题意可得
m>0
f(4);=13m+19<0
 ①,或 
m<0
f(m)=13m+19>0
②,分别求得①、②的解集,再取并集,即得所求.
解答: 解:令f(x)=mx2+2(m+3)x+2m+14,则由题意可得
m>0
f(4);=13m+19<0
 ①,或 
m<0
f(m)=13m+19>0
②.
解①求得m∈∅,解②求得-
19
13
<m<0,
故选:D.
点评:本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=x5+2x3+3x2+x+1,用秦九韶算法计算f(3)=(  )
A、327B、328
C、165D、166

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则此几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=1-
1
2
bn
,求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知是夹角为60°的两个单位向量,若
e1
e2
=60°,
a
=
e1
+
e2
b
=-4
e1
+2
e2
,则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

育才中学从参加高二年级学业水平测试的学生中抽出100名学生,其数学成绩的频率分布直方图如下图所示.其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].则成绩在[80,100]上的人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从只含有二件次品的10个产品中取出三件,设A为“三件产品不全是次品”,B为“三件产品全不是次品”,C为“三件产品全是次品”,则下列结论正确的是(  )
A、事件A与B互斥
B、事件A是随机事件
C、任两个均互斥
D、事件C是不可能事件

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各题
(1)
lg2+lg5-lg8
lg50-lg40

(2)log225•log34•log59.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2+a10=4,则a6=(  )
A、-2B、2C、4D、-4

查看答案和解析>>

同步练习册答案