精英家教网 > 高中数学 > 题目详情
20.已知a>0,函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,当x∈[0,$\frac{π}{2}$]时,-5≤f(x)≤1.
(1)求常数a,b的值;
(2)设g(x)=f(x+$\frac{π}{2}$)且lg g(x)>0,求g(x)的单调区间.

分析 (1)当x∈[0,$\frac{π}{2}$]时,求出内层函数范围,求解f(x)的值域,根据-5≤f(x)≤1.即可求解a,b的值;
(2)由g(x)=f(x+$\frac{π}{2}$)求解g(x)的解析式,lg g(x)>0,即lg g(x)>lg1.即可求g(x)的单调区间.

解答 解:f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,
(1)当x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$].
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1.
∴-2a≤-2asin(2x+$\frac{π}{6}$)≤a.
则b≤f(x)≤3a+b.
∵-5≤f(x)≤1.
∴$\left\{\begin{array}{l}{b=-5}\\{3a+b=1}\end{array}\right.$,
解得:a=2,b=-5
得f(x)=-4sin(2x+$\frac{π}{6}$)-1.
(2)g(x)=f(x+$\frac{π}{2}$),即g(x)=-4sin[2(x$+\frac{π}{2}$)+$\frac{π}{6}$]-1=-4sin(2x+$\frac{7π}{6}$)-1=4sin(2x+$\frac{π}{6}$)-1.
∵lg g(x)>0,即lg g(x)>lg1.
可得:4sin(2x+$\frac{π}{6}$)-1>1.
∴sin(2x+$\frac{π}{6}$)>$\frac{1}{2}$.
可得:$2kπ+\frac{π}{6}$<2x+$\frac{π}{6}$≤$2kπ+\frac{5π}{6}$,k∈Z.
求g(x)的单调增区间.
∴$2kπ+\frac{π}{6}$<2x+$\frac{π}{6}$≤$2kπ+\frac{π}{2}$,k∈Z.
解得:kπ<x≤$kπ+\frac{π}{6}$.
g(x)的单调增区间为(kπ,$kπ+\frac{π}{6}$],k∈Z.
求g(x)的单调减区间.
∴$2kπ+\frac{π}{2}$≤2x+$\frac{π}{6}$<$2kπ+\frac{5π}{6}$,
解得:$kπ+\frac{π}{6}$≤x$<kπ+\frac{π}{3}$
单调减区间为[$kπ+\frac{π}{6}$,$kπ+\frac{π}{3}$),k∈Z.

点评 本题考查了三角函数的图象即性质的运用和化简能力,解析式的确定.着重考查了对数不等式的求法,讨论三角函数的范围,再结合三角函数的性质求解单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图是某几何体的三视图,则该几何体的体积为(  )
A.18B.24C.27D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A、B、C所对的边分别为a、b、c,且A>B,则一定有(  )
A.cosA>cosBB.sinA>sinBC.tanA>tanBD.sinA<sinB

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=$\frac{1}{3}$x3+3xf′(0),则f′(1)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知三角形ABC内的一点D满足$\overrightarrow{DA}•\overrightarrow{DB}=\overrightarrow{DB}•\overrightarrow{DC}=\overrightarrow{DC}•\overrightarrow{DA}=-2$,且|$\overrightarrow{DA}$=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|.平面ABC内的动点P,M满足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,则$|\overrightarrow{BM}|$的最大值是$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,当钝角三角形的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为(  )
A.$\frac{5}{2}$B.$\frac{8}{7}\sqrt{7}$C.$\frac{{16\sqrt{15}}}{15}$D.$\frac{{8\sqrt{15}}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(a-2i)i2013=b-i,其中a,b∈R,i是虚数单位,则a2+b2等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知(x-$\frac{\sqrt{p}}{{x}^{2}}$)6的展开式中的常数项是75,则常数p的值为(  )
A.25B.4C.5D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a1+a2+a3=-15.

查看答案和解析>>

同步练习册答案