【题目】已知函数,在点处的切线方程为.
(1)求的解析式;
(2)求的单调区间;
(3)若函数在定义域内恒有成立,求的取值范围.
【答案】(1);(2) 的单调增区间为,单调减区间为;
(3).
【解析】【试题分析】(1)借助导数的几何意义建立方程组求解;(2)先求导再借助导数与函数单调性之间的关系求解;(3)先将不等式进行等价转化,再分离参数借助导数知识求其最值,即可得到参数的范围。
(1)由题意,得,
则,∵在点处的切线方程为,
∴切线斜率为,则,得,
将代入方程,得,解得,
∴,将代入得,
故.
(2)依题意知函数的定义域是,且,
令,得,令,得,
故的单调增区间为,单调减区间为.
(3)由,得,
∴在定义域内恒成立.
设,则,
令,得.
令,得,令,得,
故在定义域内有极小值,此极小值又为最小值.
∴的最小值为,
所以,即的取值范围为.
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得, ,其中为抽取的第个零件的尺寸, .
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).
附:若随机变量服从正态分布,则,
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的离心率为,直线: 与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)过椭圆的左顶点作直线,与圆相交于两点, ,若是钝角三角形,求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,直线的参数方程为(t为参数),P、Q分别为直线与x轴、y轴的交点,线段PQ的中点为M.
(Ⅰ)求直线的直角坐标方程;
(Ⅱ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k个格点,则称函数为k阶格点函数.已知函数:
①y=sinx; ②y=cos(x+); ③y=ex-1; ④y=x2.
其中为一阶格点函数的序号为 ( )
A. ①② B. ②③ C. ①③ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com