精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+2x+2,x≤0}\\{|lo{g}_{2}x|,x>0}\\{\;}\end{array}\right.$,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范围是(  )
A.(-3,+∞)B.(-∞,3)C.[-3,3)D.(-3,3]

分析 作出函数f(x)的图象,由图象可得x1+x2=-4,x3x4=1;1<x4≤4;从而化简$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$,再利用函数的单调性求出它的取值范围.

解答 解:作出函数f(x)的图象,
由图可知,x1+x2=-4,x3x4=1;
当|log2x|=2时,x=4或x=$\frac{1}{4}$,
则1<x4≤4
故$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$=$\frac{-4}{{x}_{4}}$+$\frac{1}{{x}_{3}}$=$\frac{-4}{{x}_{4}}$+x4
其在1<x4≤4上是增函数,
故-4+1<$\frac{-4}{{x}_{4}}$+x4≤-1+4;
即-3<$\frac{-4}{{x}_{4}}$+x4≤3;
即$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范围是(-3,3],
故选:D

点评 本题主要考查分段函数的应用,函数零点与方程的根的关系,体现了数形结合、转化的数学思想,结合对数函数的运算性质以及一元二次函数的对称性是解决本题的关键..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.y=sinx-cos(π-x)的最小值是-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=-\frac{1}{2}a{x^2}+(1+a)x-lnx(a∈R)$.
(Ⅰ)当a>0时,求函数f(x)的单调递减区间;
(Ⅱ)当a=0时,设函数g(x)=xf(x)-k(x+2)+2.若函数g(x)在区间$[\frac{1}{2},+∞)$上有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数a,b满足0≤a≤2,0≤b≤1,则函数$y=\frac{1}{3}{x^3}-{x^2}+(a+b)x+c$有极值的概率(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x}\;,\;x<1\;,\;}\\{{{log}_2}x\;,\;x≥1\;,\;}\end{array}}\right.$若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是m≥2或m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点列Pn(xn,$\frac{2}{{x}_{n}}$)与An(an,0)满足xn+1>xn,$\overrightarrow{{{P}_{n}P}_{n+1}}$⊥$\overrightarrow{{{A}_{n}P}_{n+1}}$,且|$\overrightarrow{{{P}_{n}P}_{n+1}}$|=|$\overrightarrow{{{A}_{n}P}_{n+1}}$|,其中n∈N*,x1=1.
(I)求xn+1与xn的关系式;
(Ⅱ)求证:n2<${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$≤4n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.f(x)=$\frac{2x+1}{x-a}$在区间(1,+∞)上为减函数,则实数a的取值范围是($-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的两个不等实根,函数f(x)=$\frac{2x-k}{{x}^{2}+1}$的定义域为[x1,x2],g(k)=f(x)min-f(x)max,若对任意k∈R,恒有g(k)≤a$\sqrt{1+{k}^{2}}$成立,则实数a的取值范围是a≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知复数$z=\frac{2i}{1-i}$,则|z|=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案