精英家教网 > 高中数学 > 题目详情
16.已知点列Pn(xn,$\frac{2}{{x}_{n}}$)与An(an,0)满足xn+1>xn,$\overrightarrow{{{P}_{n}P}_{n+1}}$⊥$\overrightarrow{{{A}_{n}P}_{n+1}}$,且|$\overrightarrow{{{P}_{n}P}_{n+1}}$|=|$\overrightarrow{{{A}_{n}P}_{n+1}}$|,其中n∈N*,x1=1.
(I)求xn+1与xn的关系式;
(Ⅱ)求证:n2<${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$≤4n2

分析 (I)由题意可得Pn(xn,$\frac{2}{{x}_{n}}$),Pn+1(xn+1,$\frac{2}{{x}_{n+1}}$),An(an,0),再由向量垂直的条件:数量积为0,以及向量的模的公式,化简整理,即可得到所求关系式;
(Ⅱ)当n=2时,计算成立;由xn+1-xn=$\frac{2}{{x}_{n+1}}$,可得xn+12=2+xnxn+1,讨论2n<xnxn+1<4n-2,运用累加及等差数列的求和公式,即可得证.

解答 解:(I)由题意可得Pn(xn,$\frac{2}{{x}_{n}}$),Pn+1(xn+1,$\frac{2}{{x}_{n+1}}$),An(an,0),
由$\overrightarrow{{{P}_{n}P}_{n+1}}$⊥$\overrightarrow{{{A}_{n}P}_{n+1}}$,可得(xn+1-xn)(xn+1-an)+($\frac{2}{{x}_{n+1}}$-$\frac{2}{{x}_{n}}$)•$\frac{2}{{x}_{n+1}}$=0,
化简可得xn+1-an=$\frac{4}{{x}_{n}{{x}_{n+1}}^{2}}$,
由|$\overrightarrow{{{P}_{n}P}_{n+1}}$|=|$\overrightarrow{{{A}_{n}P}_{n+1}}$|,可得(xn+1-xn2+($\frac{2}{{x}_{n+1}}$-$\frac{2}{{x}_{n}}$)2=(xn+1-an2+($\frac{2}{{x}_{n+1}}$)2
即(xn+1-xn2(1+$\frac{4}{{{x}_{n}}^{2}{{x}_{n+1}}^{2}}$)=$\frac{4}{{{x}_{n+1}}^{2}}$(1+$\frac{4}{{{x}_{n}}^{2}{{x}_{n+1}}^{2}}$),
由xn+1>xn,可得xn+1-xn=$\frac{2}{{x}_{n+1}}$;
(Ⅱ)当n=2时,x2-x1=$\frac{2}{{x}_{2}}$,由x1=1,可得x2=2,满足1<22≤4;
由xn+1-xn=$\frac{2}{{x}_{n+1}}$,可得xn+12=2+xnxn+1
${x}_{2}^{2}$=2+x1x2≥4,${x}_{3}^{2}$=2+x2x3>6,
…,${x}_{n+1}^{2}$=2+xnxn+1>2n+2,
相加可得,${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$>$\frac{1}{2}$n(6+2n)=n2+3n>n2
又${x}_{2}^{2}$=2+x1x2≤4,${x}_{3}^{2}$=2+x2x3<8,
…,${x}_{n+1}^{2}$=2+xnxn+1<4n,
相加可得,${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$<$\frac{1}{2}$n(4+4n)=2n2+2n<4n2
则有n2<${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$≤4n2

点评 本题考查向量的数量积的性质和坐标表示,以及向量的模的公式,考查不等式的证明,注意运用放缩法和等差数列的求和公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sinα=0.80,α∈(0,$\frac{π}{2}$),求sin2α,cos2α的值(保留两个有效数字).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax2-a+2(a∈R,a为常数)
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式mea+f(x0)>0(其中e为自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=m-|2x+1|-|2x-3|在R上存在零点.
(1)求实数m的取值范围;
(2)当m为最小值时,若$\frac{1}{m\sqrt{a}}$+$\frac{1}{2m\sqrt{b}}$+$\frac{1}{3m\sqrt{c}}$=1,求证:$\frac{1}{9}$$\sqrt{a}$+$\frac{2}{9}$$\sqrt{b}$+$\frac{1}{3}$$\sqrt{c}$≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+2x+2,x≤0}\\{|lo{g}_{2}x|,x>0}\\{\;}\end{array}\right.$,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范围是(  )
A.(-3,+∞)B.(-∞,3)C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设M为平面上以A(4,1),B(-1,-6),C(-3,2)三点为顶点的三角形区域(包括内部和边界),当点(x,y)在M上变化时,z=4x-3y的取值范围是(  )
A.[-18,13]B.[0,14]C.[13,14]D.[-18,14]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设P(x,y)满足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P点到两直线x-2y=0,x+2y=0距离之和不大于$\sqrt{5}$,则x-y的最大值为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.15名选举人对5名侯选人进行无记名投票选举,若选举人可以投一个至五个候选人的票,也可以弃权,则不同的选举方法共有(  )
A.215B.275C.25D.225

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量,若命题p:$\overrightarrow{a}$•$\overrightarrow{b}$>0,命题q:$\overrightarrow{a}$,$\overrightarrow{b}$夹角是锐角,则命题p是命题q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案