精英家教网 > 高中数学 > 题目详情
1.设M为平面上以A(4,1),B(-1,-6),C(-3,2)三点为顶点的三角形区域(包括内部和边界),当点(x,y)在M上变化时,z=4x-3y的取值范围是(  )
A.[-18,13]B.[0,14]C.[13,14]D.[-18,14]

分析 作出平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:由z=4x-3y得y=$\frac{4}{3}$x$-\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分ABC)
平移直线y=$\frac{4}{3}$x$-\frac{z}{3}$,由图象可知当直线y=$\frac{4}{3}$x$-\frac{z}{3}$,过点B时,直线y=$\frac{4}{3}$x$-\frac{z}{3}$截距最小,此时z最大,
代入目标函数z=4x-3y,
得z=4×(-1)-3×(-6)=-4+18=14.
∴目标函数z=4x-3y的最大值是14.
过点C时,直线y=$\frac{4}{3}$x$-\frac{z}{3}$截距最大,此时z最小,
代入目标函数z=4x-3y,
得z=4×(-3)-3×2=-12-6=-18,
∴目标函数z=4x-3y的最小值是-18.
故z的取值范围是[-18,14
故选:D.

点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设x>5,P=$\sqrt{x-4}$-$\sqrt{x-5}$,Q=$\sqrt{x-2}$-$\sqrt{x-3}$,则P与Q的大小关系是P<Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:函数y=2-ax+1的图象恒过定点(1,2);命题q:若函数y=f(x-1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,(x≥0)}\\{{x}^{2}-4x,(x<0)}\\{\;}\end{array}\right.$,若f(2-a)>f(2a),求a的取值范围为(-2,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点列Pn(xn,$\frac{2}{{x}_{n}}$)与An(an,0)满足xn+1>xn,$\overrightarrow{{{P}_{n}P}_{n+1}}$⊥$\overrightarrow{{{A}_{n}P}_{n+1}}$,且|$\overrightarrow{{{P}_{n}P}_{n+1}}$|=|$\overrightarrow{{{A}_{n}P}_{n+1}}$|,其中n∈N*,x1=1.
(I)求xn+1与xn的关系式;
(Ⅱ)求证:n2<${x}_{2}^{2}$+${x}_{3}^{2}$+…+${x}_{n+1}^{2}$≤4n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${∫}_{1}^{e}$($\frac{1}{x}$+x)dx=$\frac{1}{2}$e2+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正数x,y满足4x+9y=xy,则x+y的最小值为(  )
A.16B.20C.25D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数.当x≥0时,f(x)=2x+t(t为常数).则f(m)<3成立的一个充分不必要条件是(  )
A.m<3B.m<2C.-2<m<2D.m>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案