精英家教网 > 高中数学 > 题目详情
19.已知实数a,b满足0≤a≤2,0≤b≤1,则函数$y=\frac{1}{3}{x^3}-{x^2}+(a+b)x+c$有极值的概率(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 利用函数的极值推出不等式,然后利用几何概型求解即可.

解答 解:函数$y=\frac{1}{3}{x^3}-{x^2}+(a+b)x+c$,
可得y′=x2-2x+a+b,函数$y=\frac{1}{3}{x^3}-{x^2}+(a+b)x+c$有极值,可知导函数有两个不相等的实数根.
可得4-4(a+b)>0,即:a+b<1.
如图:满足题意的阴影部分的面积为:$\frac{1}{2}$,符合条件的所有事件的面积为:2,
所求的概率为:$\frac{\frac{1}{2}}{2}$=$\frac{1}{4}$.
故选:A.

点评 本题考查函数的极值的条件的应用,几何概型的求法,考查数形结合转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin$\frac{x}{2}$的定义域为[a,b],值域为[-1,2],则b-a的取值范围是(  )
A.[$\frac{5π}{3}$,2π]B.[$\frac{4π}{3}$,2π]C.[$\frac{4π}{3}$,$\frac{8π}{3}$]D.[2π,$\frac{8π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有240种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax2-a+2(a∈R,a为常数)
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式mea+f(x0)>0(其中e为自然对数的底数)都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.2011年3月11日,日本9.0级地震造成福岛核电站发生核泄漏危机.如果核辐射使生物体内产生某种变异病毒细胞,若该细胞开始时有2个,记为a0=2,它们按以下规律进行分裂,1 小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1 个,…,记n小时后细胞的个数为an,则an=2n+1(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=m-|2x+1|-|2x-3|在R上存在零点.
(1)求实数m的取值范围;
(2)当m为最小值时,若$\frac{1}{m\sqrt{a}}$+$\frac{1}{2m\sqrt{b}}$+$\frac{1}{3m\sqrt{c}}$=1,求证:$\frac{1}{9}$$\sqrt{a}$+$\frac{2}{9}$$\sqrt{b}$+$\frac{1}{3}$$\sqrt{c}$≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+2x+2,x≤0}\\{|lo{g}_{2}x|,x>0}\\{\;}\end{array}\right.$,若关于x的方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{x}_{1}+{x}_{2}}{{x}_{4}}$+$\frac{1}{{{x}_{3}}^{2}{x}_{4}}$的取值范围是(  )
A.(-3,+∞)B.(-∞,3)C.[-3,3)D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设P(x,y)满足$\left\{\begin{array}{l}{x-2y≥0}\\{x+2y≥0}\end{array}\right.$,且P点到两直线x-2y=0,x+2y=0距离之和不大于$\sqrt{5}$,则x-y的最大值为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设定义在(0,+∞)的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)-log2x]=6.若x0是方程f(x)-f′(x)=4的一个解,且${x_0}∈(a,a+1)(a∈{{N}^*})$,则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

同步练习册答案