精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,
1
x
+
1
y
=1,则2x+y最小值为
 
考点:基本不等式
专题:计算题,不等式的解法及应用
分析:2x+y=(2x+y)(
1
x
+
1
y
),化简后利用基本不等式可求.
解答: 解:∵x>0,y>0,
1
x
+
1
y
=1,
∴2x+y=(2x+y)(
1
x
+
1
y
)=3+
y
x
+
2x
y
≥3+2
y
x
2x
y
=3+2
2

当且仅当
y
x
=
2x
y
时取等号,
y
x
=
2x
y
1
x
+
1
y
=1
解得x=1+
2
2
,y=
2
+
1,
∴2x+y最小值为3+2
2

故答案为:3+2
2
点评:该题考查利用基本不等式求函数的最值,属基础题.变形:2x+y=(2x+y)(
1
x
+
1
y
)是解决本题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
cos2x+
3
2
sin2x+
3
2
,x∈R.
(1)求f(x)的最小正周期和最值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当k≤1时,求证:f(x)≥kx-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,首项a1=1,公比q=2,则{an}的前8项和S8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
9
=1,F1、F2是其两个焦点,CD为过F1的弦,则△F2CD的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

世卫组织规定,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.清远市环保局从市区2013年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),从这15天的数据中任取3天的数据,则恰有一天空气质量达到一级的概率为
 
(用分数作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+4(0≤x≤2)的图象与坐标轴围成的平面区域记为M,满足不等式组
2x-y≥0
2x+ay-2≤0
y≥0
的平面区域记为N,已知向区域M内任意地投掷一个点,落入区域N的概率为
3
32
,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③等比数列一定是比等差数列,等差数列不一定是比等差数列;
④若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|2x-1|>3的解集是(  )
A、{x|-1<x<2}
B、{x|-2<x<1}
C、{x|x>2或x<-1}
D、{x|x>-1或x<2}

查看答案和解析>>

同步练习册答案