精英家教网 > 高中数学 > 题目详情
5.在△ABC中,若(a+b+c)(c+b-a)-bc=0,则∠A=(  )
A.120°B.150°C.60°D.30°

分析 已知等式左边利用平方差公式化简,再利用完全平方公式展开,整理得到关系式,利用余弦定理表示出cosA,将得出的关系式代入求出cosA的值,即可确定出A的度数.

解答 解:已知等式整理得:(a+b+c)(c+b-a)=(b+c)2-a2=b2+c2-a2+2bc=bc,
即b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∵A为三角形内角,
∴A=120°.
故选:A.

点评 此题考查了余弦定理,平方差公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的通项公式an=2n-5,bn=|an|,求{bn}的前n项和Tn=$\left\{\begin{array}{l}{-{n}^{2}+4n,n=1,2}\\{{n}^{2}-4n+8,n≥3}\end{array}\right.$.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合P={x|x≤m+3},Q={x|m2-1<x<2m+2},若P?Q,则实数m的取值范围为m≤1或m≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在数列{an}中,a1=2,an+1=an+2n+1.
(1)求证:数列{an-2n}为等差数列;
(2)设数列{bn}满足bn=2log2(an+1-n),求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使x02-3x0-2≤0”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“若x<y,则x2<y2”的逆否命题是真命题
D.若命题p∧q为真则命题p∨q一定为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC的内角A,B,C的对边分别为a,b,c,A=2B,且$\frac{a}{b}$=$\frac{5}{3}$,则cosB=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若x∈R,求$\sqrt{(x-5)^{2}+16}$-$\sqrt{(x-1)^{2}+4}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x2-1)2(x-1)6的展开式中x9项的系数-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式:
(1)|x-1|>1;
(2)|x-1|+|x-3|>4.

查看答案和解析>>

同步练习册答案