精英家教网 > 高中数学 > 题目详情
18.据某报《自然健康状况》的调查报道,所测血压结果与相应年龄的统计数据如下表,观察表中数据规律,并将最适当的数据填入表中括号内.
年龄(岁)3035404550556065
收缩压
(水银柱/毫米)
110115120125130135140145
舒张压
(水银柱/毫米)
7073757880738588

分析 由题意知表格中的收缩压和舒张压形成一个等差数列和一个有两个等差数列交叉组成的数列.其中收缩压是一个公差是5的等差数列,舒张压是一个是有两个等差数列交叉组成的数列,公差分别是3和2.

解答 解:由题意知表格中的收缩压和舒张压形成一个等差数列和一个有两个等差数列交叉组成的数列,
其中收缩压是一个公差是5的等差数列,
∴135+5=140,
舒张压是一个是有两个等差数列交叉组成的数列,
∴85+3=88,
故答案为:140,88

点评 培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力.提高学生分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程:$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,且取相同的长度单位建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$.
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设曲线C与直线l交于A,B两点,若P(1,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C所对的边分别为a、b、c,已知c=2a,sinA=$\frac{1}{2}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=x-aex,x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2,则a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈(-∞,0),2x<3x;命题q:?x∈(-∞,+∞),f(x)=x3+x+6单调递增.则下面选项中真命题是(  )
A.(?p)∧qB.(?p)∧(?q)C.p∨(¬q)D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.给定椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),称圆心在原点O,半径为$\sqrt{{a^2}+{b^2}}$的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F($\sqrt{2}$,0),且其短轴上的一个端点到F的距离为$\sqrt{3}$.
(1)求椭圆C的方程和其“准圆”方程;
(2)过点(1,0)作一条倾斜角为30°的直线与椭圆交于A,B两点.若在椭圆上存在一点C满足$\overrightarrow{OC}$=λ($\overrightarrow{OA}$+$\overrightarrow{OB}$),试求λ的值;
(3)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知四棱台ABCD-A1B1C1D1的上下底面分别是边长为2和4的正方形,AA1=4且AA1⊥底面ABCD,点P为DD1的中点.
(I)求证:AB1⊥面PBC;
(Ⅱ)在BC边上找一点Q,使PQ∥面A1ABB1,并求二面角B1-PQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相邻两个对称轴的距离为$\frac{π}{2}$,以下哪个区间是函数f(x)的单调减区间(  )
A.[-$\frac{π}{3}$,0]B.$[\frac{π}{12},\frac{7π}{12}]$C.[0,$\frac{π}{3}$]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={1,2},集合N={0,1,3},则M∩N=(  )
A.{1,2,3}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

同步练习册答案