9£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇÒÈ¡ÏàͬµÄ³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{4co{s}^{2}¦È+3si{n}^{2}¦È}$£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèÇúÏßCÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¬ÈôP£¨1£¬2£©£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨I£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{4co{s}^{2}¦È+3si{n}^{2}¦È}$£¬¼´4¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®Ö±ÏßlµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯ÎªÖ±ÏßlµÄÆÕͨ·½³Ì£®
£¨¢ò£©ÓÉÓÚµãP£¨1£¬2£©ÔÚÖ±ÏßlÉÏ£¬°Ñ$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$´úÈë$\frac{x^2}{3}+\frac{y^2}{4}=1$£¬ÕûÀíµÃ£º$13{t^2}+4£¨4+6\sqrt{3}£©t+16=0$£®Éè·½³ÌµÄÁ½¸öʵ¸ùΪt1£¬t2£¬¸ù¾ÝtµÄ¼¸ºÎÒâÒå¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{4co{s}^{2}¦È+3si{n}^{2}¦È}$£¬¼´4¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬¿ÉµÃ£ºÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ4x2+3y2=12£¬»¯Îª$\frac{x^2}{3}+\frac{y^2}{4}=1$£®
Ö±ÏßlµÄ²ÎÊý·½³Ì£º$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯Îª£ºÖ±ÏßlµÄÆÕͨ·½³ÌΪ$\sqrt{3}x-y-\sqrt{3}+2=0$£®
£¨¢ò£©¡ßµãP£¨1£¬2£©ÔÚÖ±ÏßlÉÏ£¬°Ñ$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$´úÈë$\frac{x^2}{3}+\frac{y^2}{4}=1$£¬
ÕûÀíµÃ£º$13{t^2}+4£¨4+6\sqrt{3}£©t+16=0$£¬¡÷¡Ý0£¬
Éè·½³ÌµÄÁ½¸öʵ¸ùΪt1£¬t2£¬Ôò${t_1}+{t_2}=-\frac{{8£¨2+3\sqrt{3}£©}}{13}$£¬
¸ù¾ÝtµÄ¼¸ºÎÒâÒåµÃ£º$|{PA}|+|{PB}|=-£¨{t_1}+{t_2}£©=\frac{{8£¨2+3\sqrt{3}£©}}{13}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬EÊÇAA1µÄÖе㣮
£¨1£©ÇóÖ¤£ºA1C¡ÎÆ½ÃæBDE£»
£¨2£©Çó¶þÃæ½ÇE-BD-AµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ò»¸öÌå»ýΪ8$\sqrt{3}$µÄÕýÈýÀâÖùµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÈýÀâÖùµÄ¸©ÊÓͼµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®4$\sqrt{3}$B£®4C£®6$\sqrt{3}$D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬Íø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬´ÖÏß»­³öµÄÊÇij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®68B£®72C£®84D£®90

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{3^{x+1}}\\{log_2}x\end{array}$$\begin{array}{l}£¬x¡Ü1\\;x£¾1.\end{array}$£¬Èôf£¨x0£©£¾3£¬Ôòx0µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®x0£¾8B£®0£¼x0¡Ü1»òx0£¾8C£®0£¼x0£¼8D£®-1£¼x0£¼0»ò0£¼x0£¼8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÕý·½ÌåABCD-A1B1C1D1µÄ¸÷¸ö¶¥µã¶¼ÔÚÇòOµÄÇòÃæÉÏ£¬ÈôÇòOµÄ±íÃæÎª12¦Ð£¬ÔòÇòÐÄOµ½Æ½ÃæACD1µÄ¾àÀëΪ$\frac{\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª$\overrightarrow a$=£¨2£¬1£©£¬$\overrightarrow b$=£¨3£¬4£©£¬Ôò$\overrightarrow a$ÔÚ$\overrightarrow b$·½ÏòÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®$2\sqrt{5}$B£®$\sqrt{5}$C£®2D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®228Óë1995µÄ×î´ó¹«Ô¼ÊýµÄÈý½øÖƱíʾÊÇ2010£¨3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¾Ýij±¨¡¶×ÔÈ»½¡¿µ×´¿ö¡·µÄµ÷²é±¨µÀ£¬Ëù²âѪѹ½á¹ûÓëÏàÓ¦ÄêÁäµÄͳ¼ÆÊý¾ÝÈçÏÂ±í£¬¹Û²ì±íÖÐÊý¾Ý¹æÂÉ£¬²¢½«×îÊʵ±µÄÊý¾ÝÌîÈë±íÖÐÀ¨ºÅÄÚ£®
ÄêÁ䣨Ë꣩3035404550556065¡­
ÊÕËõѹ
£¨Ë®ÒøÖù/ºÁÃ×£©
110115120125130135140145¡­
ÊæÕÅѹ
£¨Ë®ÒøÖù/ºÁÃ×£©
7073757880738588¡­

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸