精英家教网 > 高中数学 > 题目详情
20.一个体积为8$\sqrt{3}$的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为(  )
A.4$\sqrt{3}$B.4C.6$\sqrt{3}$D.6

分析 由侧视图可知:底面正三角形的高为2$\sqrt{3}$,可得底面边长a,可得:该三棱柱的俯视图为边长为a的正三角形,即可得出面积.

解答 解:由侧视图可知:底面正三角形的高为2$\sqrt{3}$,可得底面边长=$\frac{2\sqrt{3}}{tan6{0}^{°}}$×2=4,
∴该三棱柱的俯视图为边长为4的正三角形,其面积=$\frac{1}{2}×{4}^{2}×sin6{0}^{°}$=$\frac{\sqrt{3}}{4}×{4}^{2}$=4$\sqrt{3}$.
故选:A.

点评 本题考查了三视图的有关计算、正三角形的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数y=sin(πx+$\frac{π}{3}$)的最小正周期为(  )
A.2B.πC.$\frac{π}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程sin(2x-$\frac{π}{4}$)=|lgx|根的个数等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个棱长为$\root{3}{6}$的正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则此剩余部分的体积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个锥体挖去一个柱体后的三视图如图所示,网格上小正方形的边长为1,则该几何体的体积等于(  )
A.11πB.C.$\frac{11}{3}$πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某三棱椎的三视图如图所示,则其体积为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得$\sum_{i=1}^{10}{x}_{i}$=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$${{x}_{i}}^{2}$=720.家庭的月储蓄y对月收入x的线性回归方程为y=bx+a,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为8千元.
(附:线性回归方程y=bx+a中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程:$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}{\;}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,且取相同的长度单位建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$.
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设曲线C与直线l交于A,B两点,若P(1,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A、B、C所对的边分别为a、b、c,已知c=2a,sinA=$\frac{1}{2}$,则sinC=1.

查看答案和解析>>

同步练习册答案