精英家教网 > 高中数学 > 题目详情
5.某三棱椎的三视图如图所示,则其体积为$\frac{{\sqrt{3}}}{3}$.

分析 由三视图知该几何体是一个三棱锥,由三视图之间的关系求出几何元素的长度,由锥体的体积公式求出几何体的体积.

解答 解:根据三视图可知几何体是一个三棱锥,
底面是一个三角形:即俯视图:底是2、高是侧视图的底边$\sqrt{3}$,
三棱锥的高是侧视图和正视图的高1,
∴几何体的体积V=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×1$=$\frac{{\sqrt{3}}}{3}$,
故答案为:$\frac{{\sqrt{3}}}{3}$.

点评 本题考查三视图求几何体的体积以,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.根据如图所示的程序框图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则框1中填是,框2中填否.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{16}{n}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{21}{5}$C.$\frac{8}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,一个几何体的主视图和左视图都是边长为4的正方形,中间线段平分正方形,俯视图中有一内切圆,则该几何体的全面积为(  )
A.64+8πB.56+12πC.32+8πD.48+8π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个体积为8$\sqrt{3}$的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为(  )
A.4$\sqrt{3}$B.4C.6$\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知球O的半径为2,一圆锥内接于球O,且圆锥的下底面的内接正三角形的面积为$\frac{9\sqrt{3}}{4}$,则该圆锥的表面积为(2$\sqrt{3}$+3)π或9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.68B.72C.84D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正方体ABCD-A1B1C1D1的各个顶点都在球O的球面上,若球O的表面为12π,则球心O到平面ACD1的距离为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)在区间[a,b]上有单调性,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上有0或1个根.

查看答案和解析>>

同步练习册答案