精英家教网 > 高中数学 > 题目详情
7.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的上方.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点P(1,1)的直线l1被圆C截得的弦长等于2$\sqrt{3}$,求直线l1的方程.

分析 (Ⅰ)设圆心C(a,0),(a>-$\frac{5}{2}$),由题意结合点到直线的距离公式列式求得a值,则圆的方程可求;
(Ⅱ)由垂径定理可得圆心C到直线l1 的距离,然后分直线l1 的斜率存在与不存在分类求解得答案.

解答 解:(Ⅰ)设圆心C(a,0),(a>-$\frac{5}{2}$),则$\frac{|4a+10|}{5}=2$,解得a=0或a=-5(舍),
∴圆C:x2+y2=4;
(Ⅱ)由题意可知圆心C到直线l1 的距离为$\sqrt{{2}^{2}-(\sqrt{3})^{2}}=1$,
若直线l1 斜率不存在,则直线l1:x=1,圆心C到直线l1的距离为1;
若直线l1斜率存在,设直线l1:y-1=k(x-1),即kx-y+1-k=0,
则$\frac{|1-k|}{\sqrt{{k}^{2}+1}}=1$,解得k=0,直线l1:y=1.
综上直线l1 的方程为x=1或y=1.

点评 本题考查直线与圆位置关系的应用,考查了垂径定理的应用,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在坐标原点O,其图象关于y轴对称且经过点M(2,1).
(1)求抛物线C的方程;
(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;
(3)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1k2=-2时,试证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函数g(x)=|f(x)|-1,若g(2-a2)>g(a),则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则(  )
A.a1,a2,a3成等比数列B.a2,a3,a6成等比数列
C.a3,a4,a8成等比数列D.a4,a6,a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Sn是等比数列的前n项和,S4、S2、S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.

(Ⅰ)求直方图中a的值及甲班学生每天平均学习时间在区间[10,12]的人数;
(Ⅱ)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c为角A,B,C的对边,若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{sinC}$,则△ABC是(  )
A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x<3\\{2^x},x≥3\end{array}$,则f(f(2))=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为8.

查看答案和解析>>

同步练习册答案