精英家教网 > 高中数学 > 题目详情
等差数列{an}的前3项和为21,其前6项和为24,则其首项a1
9
9
;数列{|an︳}的前9项和等于
41
41
分析:根据条件可列出关于首项与公差的方程组,从而可求得其通项公式,首项a1,与数列{|an︳}的前9项和可求.
解答:解:设等差数列{an}的公差为d,则
3a1+3d=21
6a1+15d=24
解得a1=9,d=-2,∴an=-2n+11,
由an=-2n+11≥0得n≤5.5,即an从第六项开始小于0;∴|a1|+|a2|+…+|a9|=a1+a2+…+a5-a6-a7-…-a9=25+16=41.
故答案为:9,41.
点评:本题考查等差数列的求和,解题的关键在于得到an=-2n+11后,确定哪些项为正,哪些项为负值,从而求其和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若-a7<a1<-a8,则必定有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足a2=6,S5=50,数列{bn}的前n项和Tn满足Tn+
1
2
bn=1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}为等比数列;
(Ⅲ)记cn=
1
4
anbn
,数列{cn}的前n项和为Rn,若Rn<λ对n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前2006项的和S2006=2008,其中所有的偶数项的和是2,则a1003的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,a1=1;等比数列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an与bn
(Ⅱ)设cn=an+2bn(n∈N*),数列{cn}的前n项和为Tn.若对一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,则a5+a6>0是S8≥S2的(  )
A、充分而不必要条件B、必要而不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案