精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,则不等式f(x)<f(1)的解集是{x|1<x<3或x<-3}.

分析 先求出f(1)的值,再利用分段函数解不等式即可.

解答 解:∵f(1)=3
当x<0时,令x+6<3有x<-3,又∵x<0,∴x<-3,
当x≥0时,令x2-4x+6<3,∴1<x<3,
综上不等式的解集为:{x|1<x<3或x<-3};
故答案为:{x|1<x<3或x<-3}

点评 本题主要考查分段函数的应用和不等式的求法.属中档题.注意:函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设集合M={0,1},N={1,2,3},映射f:M→N使对任意的x∈M,都有x+f(x)是奇数,则这样的映射f的个数是(  )
A.9B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,且$\overrightarrow a$与$\overrightarrow a$+$\overrightarrow b$夹角的余弦值为$\frac{1}{3}$,则$\overrightarrow a$•$\overrightarrow b$可以是(  )
A.4B.-3C.$-2\sqrt{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{4-x}{ax}$+lnx.
(1)当a=1时,求f(x)的单调区间;
(2)若函数g(x)=f(x)-$\frac{x}{a}$在区间(1,3)上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个顶点为A(0,-1),且右焦点到直线x-y+2$\sqrt{2}$=0的距离为3.     
(1)求椭圆的方程;
(2)若直线y=kx+m(k≠0)与椭圆交于不同的两个点M,N,当|AM|=|AN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:-x2+7x+8≥0,q:x2-2x+1-4m2≤0(m>0).
(1)若p是q的充分不必要条件,求实数m的取值范围.
(2)若“非p”是“非q”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)的定义域为[0,4],则函数y=f(2x)-ln(x-1)的定义域为(  )
A.[1,2]B.(1,2]C.[1,8]D.(1,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(m,n)是抛物线M:y2=2px(p>0)上的动点,点B是圆C:(x-2)2+y2=1上的动点,当且仅当m=$\frac{3}{2}$时,|AB|取得最小值.
(1)求抛物线方程;
(2)已知等边三角形△ABC的三个顶点在抛物线M上,△ABC的重心Q落在双曲线$\frac{{x}^{2}}{8}$-$\frac{9{y}^{2}}{8}$=1上,求点Q坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)是定义在R上的奇函数,且x>0时,f(x)=-x2+x+1,求f(x)的解析式.

查看答案和解析>>

同步练习册答案