精英家教网 > 高中数学 > 题目详情
20.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为(  )
A.B.C.D.

分析 由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.

解答 解:由俯视图和正视图可以得到几何体是一个简单的组合体,
是由一个三棱锥和被轴截面截开的半个圆锥组成,
∴侧视图是一个中间有分界线的三角形,
故选:C.

点评 本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题

若不等式表示的平面区域为均为内一点,为坐标原点,,则下列判断正确的是( )

A.的最小值为 B.的最小值为

C.的最大值为 D.的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对部分4G手机用户每日使用流量(单位:M)进行统计,得到如下记录:
流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
频率0.050.250.300.250.150
将手机日使用的流量统计到各组的频率视为概率,并假设每天手机的日流量相互独立.
(Ⅰ)求某人在未来连续4天里,有连续3天的手机的日使用流量都不低于15M且另1天的手机日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未来3天时间里手机日使用流量不低于15M的天数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x,O是原点,A,B为抛物线上两动点,且满足OA⊥OB,若OM⊥AB于M点.
(Ⅰ)求M的轨迹方程.
(Ⅱ)过点F(1,0)作互相垂直的两条直线l1,l2,分别交抛物线C于点P、Q和点K、L.设线段PQ,KL的中点分别为R、T,求证:直线RT恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{OA}=(2,0),\overrightarrow{OC}=\overrightarrow{AB}=(0,1)$,其中O为坐标原点,动点M到定直线y=1的距离等于d,并且满足$\overrightarrow{OM}•\overrightarrow{AM}=k(\overrightarrow{CM}•\overrightarrow{BM}-{d^2}),k$为非负实数
(1)求动点M的轨迹C1的方程
(2)若将曲线C1向左平移一个单位得到曲线C2,试指出C2为何种类型的曲线;
(3)若0<k<1,F1、F2是(2)中曲线C2的两个焦点,当点P在C2上运动时,求∠F1PF2取得最大值时对应点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知平面ABC⊥平面ACDE,且△ABC为等腰直角三角形,AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2.
(Ⅰ)求证:平面ABE⊥平面BCE;
(Ⅱ)求二面角C-BE-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直角坐标平面内两相异点A、B两点满足:
①点A、B都在函数 f (x) 的图象上;②点A、B关于原点对称,
则点对 (A,B) 是函数 f (x) 的一个“姊妹点对”.点对 (A,B) 与 (B,A) 可看作是同一个“姊妹点对”.已知函数 f (x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{x+1}{e},x≥0}\end{array}\right.$,则 f (x) 的“姊妹点对”有(  )
A.0 个B.1 个C.2 个D.3 个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.湛江成功申办2014年广东省第十四届运动会.为做好承办工作,决定选拔3名专业人士加入组委会.经过初选确定4男2女为候选人,每位候选人当选的机会相等.记ξ为女专业人士当选人数.
(1)求ξ=0的概率; 
(2)求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=3-2t}\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,则直线l与曲线C相交的弦长为$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

同步练习册答案