精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx的图象在点x=1处的切线方程是
 
考点:椭圆的简单性质
专题:计算题,导数的概念及应用
分析:x=1代入解析式求出切点的坐标,再求出函数的导数后代入求出f′(1),即为所求的切线斜率,再代入点斜式进行整理即可.
解答: 解:把x=1代入f(x)=lnx得,f(1)=ln1=0,
∴切点的坐标为:(1,0),
由f′(x)=(lnx)′=
1
x
,得在点x=1处的切线斜率k=f′(1)=1,
∴在点x=1处的切线方程为:y=x-1,
故答案为:y=x-1.
点评:本题考查了导数的几何意义和直线点斜式方程,关键求出某点处切线的斜率即该点处的导数值,还有切点的坐标,利用切点在曲线上和切线上.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,求证:
a+b
2
-
ab
a2+b2
2
-
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面
α分别与直线BC,AD相交于点G,H,下列判断中:
①对于任意的平面α,都有S△EFG=S△EFH
②存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;
③对于任意的平面α,都有直线GF,EH,BD相交于同一点或相互平行;
④对于任意的平面α,当G,H在线段BC,AD上时,几何体AC-EGFH的体积是一个定值.
其中正确的序号是(  )
A、①③④B、③④
C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比不为1的等比数列{an}的首项a1=
1
2
,前n项和为Sn,且a4+S4,a5+S5,a6+S6成等差数列.
(1)求等比数列{an}的通项公式;
(2)当n≥3时,求数列{|3+log2an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-mx(m∈R),e为自然对数的底数.
(1)讨论函数f(x)在区间(e,+∞)上的单调性,并求出极值.
(2)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0

(1)求z=x+2y的最大和最小值.
(2)求z=
y
x
的取值范围.
(3)求z=x2+y2的最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数(1-i)•(1+i)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)(lg2)2+lg2×lg50+lg25;
(2)2log2
1
4
+(
9
16
)
1
2
+lg20-lg2-(log32)(log23)+(
2
-1)lg1

查看答案和解析>>

同步练习册答案