精英家教网 > 高中数学 > 题目详情
某企业生产甲、乙两种产品,已知生产每吨产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.如何安排生产该企业可获得最大利润?最大利润为多少?
考点:根据实际问题选择函数类型
专题:应用题,不等式的解法及应用
分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.
解答: 解:设该企业生产甲产品为x吨,乙产品为y吨,
则该企业可获得利润为z=5x+3y,
x≥0
y≥0
3x+y≤13
2x+3y≤18

联立
3x+y=13
2x+3y=18

解得 x=3 y=4,
由图可知,最优解为P(3,4),
∴z的最大值为z=5×3+3×4=27(万元).
故答案为:27万元.
点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=4.
(1)当
a
b
且方向相同时,求
a
b

(2)当
a
b
时,求|
a
+
b
|;
(3)若
a
+2
b
与3
a
-
b
垂直,求向量
a
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)在x=4时取最小值-3,且它的图象与x轴的两个交点间的距离为6,求这个二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
x24568
y3040605070
(1)在给出的直角坐标系中画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10万元时,销售收入y的值.
参考公式:回归直线的方程
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

参考数据:
5
i=1
x
2
i
=145
5
i=1
y
2
i
=13500
5
i=1
xiyi=1380

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个算法,输入正整数a,b(a>b),用辗转相除法求这两正整数的最大公约数,要求画出程序框图和写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点的坐标分别是A(3,0),B(0,3),C(cosα,sinα),其中
π
2
<α<
2

(1)求
CA
-
CB

(2)若|
CA
|=|
CB
|,求α的值;
(3)若
AC
BC
=-1,求
2sin2α+2sinαcosα
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-4x,(0≤x≤3)
x2+6x,(-2≤x≤0)
,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,面A1B1C1D1中心为O1
(1)求证:DO1∥面AB1C;
(2)求异面直线DO1与B1C所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2+ax+3在[0,1]上的最小值.

查看答案和解析>>

同步练习册答案