精英家教网 > 高中数学 > 题目详情
4.已知长方形ABCD中,AB=4,BC=1,M为AB的中点,则在此长方形内随机取一点P,P与M的距离小于1的概率为$\frac{π}{8}$.

分析 本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点P到M的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.

解答 解:根据几何概型得:
取到的点到M的距离小1的概率:
p=$\frac{d}{D}$=$\frac{圆的内部面积}{矩形的面积}$
=$\frac{{\frac{1}{2}×1}^{2}π}{4×1}$=$\frac{π}{8}$.
故答案为:$\frac{π}{8}$.

点评 本题主要考查几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若a>-2,b>0且a+b=8,则$\sqrt{(a+2)b}$的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-3x-4>0},集合B={x||2-x|≤4},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中角A,B,C对边分别为a,b,c,且满足$2asin(C+\frac{π}{6})=b+c$.
(Ⅰ)求A的值;
(Ⅱ)若$B=\frac{π}{4},b-a=\sqrt{2}-\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知同一平面内 圆O1和圆 O2的半径都等于1,圆心距离|O1O2|=4,P为动点,过点P分别作两圆切线,M、N为切点,使得|PM|=$\sqrt{2}|{PN}$|,试建立适当的平面直角坐标系,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:对于任意,函数f(x)=lg(x2-ax+4)恒有意义.命题q:存在x∈[1,4]使得x2-4x+a=0成立,
(1)若p是真命题,求实数a的取值范围;
(2)若p∨q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.三棱锥A-BCD的外接球半径为$\sqrt{13}$,AD=2,且满足$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{AB}•\overrightarrow{AD}$=$\overrightarrow{AC}•\overrightarrow{AD}=0$,则三棱锥A-BCD体积的最大值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x-1)的定义域是[-1,3],则f(x)=f(2x)+lg(1-x)的定义域为(  )
A.[-1,1]B.[-1,1)C.[-4,1)D.[-4,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z=(2m2-3m-2)+(m2-3m+2)i.
(Ⅰ)当实数m取什么值时,复数z是纯虚数;
(Ⅱ)当m=0时,化简$\frac{{z}^{2}}{z+5+2i}$.

查看答案和解析>>

同步练习册答案