【题目】如图,E,F是AD上互异的两点,G,H是BC上互异的两点,由图可知,①AB与CD互为异面直线;②FH分别与DC,DB互为异面直线;③EG与FH互为异面直线;④EG与AB互为异面直线.其中叙述正确的是 ( )
![]()
A. ①③ B. ②④ C. ①④ D. ①②
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布
.
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在
之外的零件数,求
;
(2)一天内抽检零件中,如果出现了尺寸在
之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
下面是检验员在一天内抽取的16个零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
,
,其中
为抽取的第
个零件的尺寸,
.
用样本平均数
作为
的估计值
,用样本标准差
作为
的估计值
,利用估计值判断是否需对当天的生产过程进行检查?剔除
之外的数据,用剩下的数据估计
和
(精确到0.01).
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图.
(2)求回归方程.
(3)试预测广告费支出为10百万元时,销售额多大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
如图,四边形
是正方形,△
与△
均是以
为直角顶点的等腰直角三角形,点
是
的中点,点
是边
上的任意一点.
![]()
(1)求证:
;
(2)求二面角
的平面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,直线
:
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)过椭圆
的左顶点
作直线
,与圆
相交于两点
,
,若
是钝角三角形,求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,直线
的参数方程为
(t为参数),P、Q分别为直线
与x轴、y轴的交点,线段PQ的中点为M.
(Ⅰ)求直线
的直角坐标方程;
(Ⅱ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com