精英家教网 > 高中数学 > 题目详情

ABCD是正方形,PA⊥平面AC,且PA=AB,则二面角B﹣PC﹣D的度数为( )

A.60° B.90° C.120° D.135°

C

【解析】

试题分析:通过建立如图所示的空间直角坐标系,利用两个平面的法向量的夹角求得二面角.

【解析】
由题意可得,AP,AB,AD两两垂直,所以可建立如图所示的空间直角坐标系.

则A(0,0,0),B(0,1,0),C(1,1,0),D(1,0,0),P(0,0,1).

设平面PCD的法向量为,则

令x=1,则z=1,y=0.∴

同理可得平面PBC的法向量=(0,1,1).

==

从图中可以看到:二面角B﹣PC﹣D的大小应为一个钝角.

∴二面角B﹣PC﹣D的度数=180°﹣60°=120°.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年北师大版选修4-1 2.2直线与球、平面与球位置关系(解析版) 题型:选择题

(2009•四川)如图,在半径为3的球面上有A、B、C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是,则B、C两点的球面距离是( )

A. B.π C. D.2π

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-2 2.5简单复合函数求导法则练习卷(解析版) 题型:?????

(2012•德阳三模)已知,将函数的图象按向量平移后,所得图象恰好为函数y=﹣f′(x)(f′(x)为f(x)的导函数)的图象,则c的值可以为( )

A. B.π C. D.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-2 2.4导数的四则运算法则练习卷(解析版) 题型:?????

(2012•赣州模拟)函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1﹣x2|的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-1 2.5夹角的计算练习卷(解析版) 题型:?????

将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为( )

A.45° B.30° C.60° D.90°

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-1 2.5夹角的计算练习卷(解析版) 题型:?????

在空间中,“经过点P(x0,y0,z0),法向量为的平面的方程(即平面上任意一点的坐标(x,y,z)满足的关系)是:A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0”.如果给出平面α的方程是x﹣y+z=1,平面β的方程是,则由这两平面所成的二面角的正弦值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-1 2.5夹角的计算练习卷(解析版) 题型:?????

(2012•静安区一模)在棱长为1的正方体ABCD﹣A1B1C1D1中,E为棱BC的中点,F为棱DD1的中点.则异面直线EF与BD1所成角的余弦值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年四川省成都市高三第一次诊断性检测文科数学试卷(解析版) 题型:解答题

(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为

(Ⅰ)求“”的概率;

(Ⅱ)求“”的概率.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年上海市黄浦区高三上学期期终调研测试文科数学试卷(解析版) 题型:解答题

(本题满分12分)在长方体中,分别是所在棱的中点,点是棱上的动点,联结.如图所示.

(1)求异面直线所成角的大小(用反三角函数值表示);

(2)求以为顶点的三棱锥的体积.

查看答案和解析>>

同步练习册答案