精英家教网 > 高中数学 > 题目详情
8.函数y=3cos2x-4sinx+1的值域为[-3,$\frac{16}{3}$].

分析 化简函数y,利用换元法设sinx=t,再结合二次函数的图象与性质,即可求出函数y的值域.

解答 解:化简可得y=4-3sin2x-4sinx,
设sinx=t,则t∈[-1,1],
换元可得y=-3t2-4t+4=-3(t+$\frac{2}{3}$)2+$\frac{16}{3}$,
由二次函数的性质得,
当t=-$\frac{2}{3}$时,函数y取得最大值$\frac{16}{3}$,
当t=1时,函数y取得最小值-3,
所以函数y的值域为[-3,$\frac{16}{3}$].
故答案为:[-3,$\frac{16}{3}$].

点评 本题考查了换元法求三角函数的最值问题,涉及换元法和二次函数在闭区间上的最值问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知λ∈R,函数f(x)=λex-xlnx(e=2.71828…是自然对数的底数).
(Ⅰ)若f(1)=0,证明:曲线y=f(x)没有经过点$M({\frac{2}{3},0})$的切线;
(Ⅱ)若函数f(x)在其定义域上不单调,求λ的取值范围;
(Ⅲ)是否存在正整数n,当$λ∈[{\frac{n+1}{{n{e^{n+1}}}},+∞})$时,函数f(x)的图象在x轴的上方,若存在,求n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD边长为4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)点E为线段PD上一点,且三棱锥E-BCD的体积为$\frac{8}{3}$,求平面EBC与平面PAB所成锐二面角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z1=1+5i,z2=-3+7i,则复数z=z1-z2在复平面内对应的点在(  )
A.第四象限B.第二象限C.第三象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列观察下表,则第106  行的各数之和等于2112

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设α为锐角,sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{16}{25}$D.$-\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若曲线f(x)=x4-x在点P处的切线垂直于直线x-y=0,则点P的坐标为(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a=({\sqrt{3}sinx,cosx})$,$\overrightarrow b=({cosx,cosx})$,f(x)=2$\overrightarrow a•\overrightarrow b+2m-1({x,m∈R})$
(1)当x∈R时,f(x)有最大值6,求m的值;
(2)在(1)的条件下,求f(x)单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团未参加书法社团
参加演讲社团86
未参加演讲社团630
(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.

查看答案和解析>>

同步练习册答案