精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域是,则实数的取值范围是( )
A.
B.
C.
D.

【答案】C
【解析】因为函数的定义域为 ,所以 的解集为 , 所以
解得 综上,
【考点精析】本题主要考查了函数的定义域及其求法和二次函数的性质的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的左、右焦点分别为F1F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.

(1)求椭圆的方程;

(2)过点M分别作直线MAMB交椭圆于AB两点,设两直线的斜率分别为k1k2,且k1k2=8,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x)=f′(1)ex1﹣f(0)x+ x2
(1)求f(x)的解析式及单调区间;
(2)若 ,求(a+1)b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a﹣1)(ax﹣ax)(0<a<1).
(1)判断f(x的奇偶性;
(2)用定义证明f(x)为R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x|,g(x)=lg(ax2﹣4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0, )上的函数f(x)的导函数为f′(x),且对于任意的x∈(0, ),都有f′(x)sinx<f(x)cosx,则(
A. f( )> f(
B.f( )>f(1)
C. f( )<f(
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四个结论:
直线l经过定点(0,-2);
②若直线l在x轴和y轴上的截距相等,则 =1;
∈[1, 4+3 ]时,直线l的倾斜角q∈[120°,135°];
④当 ∈(0,+∞)时,直线l与两坐标轴围成的三角形面积的最小值为
其中正确结论的是(填上你认为正确的所有序号).

查看答案和解析>>

同步练习册答案