分析 由于A,B连线经过坐标原点,得出A,B关于原点对称,根据离心率求出a、b、c的关系,即可求出直线MA,MB的斜率乘积.
解答 解:根据双曲线的对称性可知A,B关于原点对称,
设A(x1,y1),B(-x1,-y1),M(x,y),
则$\frac{{{x}_{1}}^{2}}{{a}^{2}}$-$\frac{{{y}_{1}}^{2}}{{b}^{2}}$=1①,
$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1②,
∴$\frac{{{x}_{1}}^{2}{-x}^{2}}{{a}^{2}}$=$\frac{{{y}_{1}}^{2}{-y}^{2}}{{b}^{2}}$,
即$\frac{{y}^{2}{{-y}_{1}}^{2}}{{x}^{2}{{-x}_{1}}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$;
又该双曲线的离心率为e=$\frac{c}{a}$=2,
∴$\frac{{a}^{2}{+b}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$=4,
∴$\frac{{b}^{2}}{{a}^{2}}$=3,
∴k1•k2=$\frac{{y}_{1}-y}{{x}_{1}-x}$•$\frac{{y}_{2}-y}{{x}_{2}-x}$=$\frac{{y}_{1}-y}{{x}_{1}-x}$•$\frac{{-y}_{1}-y}{{-x}_{1}-x}$=$\frac{{y}^{2}{{-y}_{1}}^{2}}{{x}^{2}{{-x}_{1}}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$=3.
故答案为:3.
点评 本题主要考查了双曲线的几何性质与应用问题,解题的关键是设点代入化简,应注意双曲线几何量之间的关系,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于原点对称 | B. | 关于x轴对称 | ||
| C. | 关于直线x=-$\frac{π}{6}$对称 | D. | 关于点($\frac{π}{6}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | λ=5t | B. | λ=-5t | C. | t=5λ | D. | t=-5λ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com