精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$,若函数y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6个零点,则b的取值范围是(  )
A.($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$)B.(-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞)C.(0,$\frac{1}{3}$)∪($\frac{2}{3}$,1)D.($\frac{2}{9}$,$\frac{7}{9}$)

分析 作函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$的图象,从而化为函数y=x2-2bx+b-$\frac{2}{9}$在(0,1)上有2个零点,从而解得.

解答 解:作函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$的图象如下,

∵函数y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6个零点,
∴函数y=x2-2bx+b-$\frac{2}{9}$在(0,1)上有2个零点,
∴$\left\{\begin{array}{l}{b-\frac{2}{9}>0}\\{1-2b+b-\frac{2}{9}>0}\\{0<b<1}\\{{b}^{2}-2{b}^{2}+b-\frac{2}{9}<0}\end{array}\right.$,
解得,b∈($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$),
故选:A.

点评 本题考查了函数的图象的作法及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知边长为6的正三角形ABC,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AC}$,AD与BE交于点P,则$\overrightarrow{PB}$•$\overrightarrow{PD}$的值为$\frac{27}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{-x^2+4x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若函数g(x)=f(x)-mx有且只有一个零点,则实数m的取值范围是(  )
A.[1,4]B.(-∞,0]C.(-∞,4]D.(-∞,0]∪[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则:
(1)△ABC的外接圆方程为(x+1)2+(y-1)2=10;
(2)顶点C的坐标是(-4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}:满足:a1=2,an+an-1=4n-2(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:b1+3b2+7b3…+(2n-1)bn=an.求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.复数z和(z+2)2+8i在复平面内对应的点都在虚轴上,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用定义求y=x3-$\frac{1}{x}$的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线3x+4y+12=0和6x+8y-11=0之间的距离为一圆的直径,则此圆的面积是(  )
A.$\frac{49}{16}$πB.$\frac{32}{25}$πC.$\frac{32}{4}$πD.$\frac{7}{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=logax(a>0且a≠1).
(1)若a=3,f($\frac{27}{x}$)=-5,求x的值;
(2)若f(3a-1)>f(a),求实数a的取值范围.

查看答案和解析>>

同步练习册答案