精英家教网 > 高中数学 > 题目详情
8.已知边长为6的正三角形ABC,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AC}$,AD与BE交于点P,则$\overrightarrow{PB}$•$\overrightarrow{PD}$的值为$\frac{27}{4}$.

分析 由题意以BC为x轴,以BC的垂直平分线为y轴,建立坐标系,根据等边三角形的性质,得到点的坐标,根据三等分点坐标公式求出点E的坐标,再根据两点式,求出直线直线BE的方程,令x=0,得到P点的坐标,再根据向量的数量积即可求出答案.

解答 解:∵等边三角形ABC的边长为6,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AC}$,
∴以BC为x轴,以BC的垂直平分线为y轴,
∴B(-3,0),C(3,0),A(0,3$\sqrt{3}$),D(0,0),
∴E($\frac{2×0+3}{3}$,$\frac{2×3\sqrt{3}+0}{3}$)=(1,2$\sqrt{3}$),
∴直线BE的方程为$\frac{y-0}{2\sqrt{3}-0}$=$\frac{x+3}{1+3}$,即y=$\frac{\sqrt{3}}{2}$(x+3),
令x=0,得y=$\frac{3\sqrt{3}}{2}$,
∴P(0,$\frac{3\sqrt{3}}{2}$),
∴$\overrightarrow{PB}$=(-3,-$\frac{3\sqrt{3}}{2}$),$\overrightarrow{PD}$=(0,-$\frac{3\sqrt{3}}{2}$),
∴$\overrightarrow{PB}$•$\overrightarrow{PD}$=-3×0+(-$\frac{3\sqrt{3}}{2}$)×(-$\frac{3\sqrt{3}}{2}$)=$\frac{27}{4}$.
故答案为:$\frac{27}{4}$

点评 本题考查向量数量积的求法,以及三等分点坐标公式,直线方程的求法,关键是建立坐标系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=1,|$\overrightarrow b$|=$\sqrt{2}$,($\overrightarrow a$+$\overrightarrow b$)⊥($\overrightarrow{2a}$-$\overrightarrow b$),则向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y=2x2的准线方程是y=-$\frac{1}{8}$;焦点到准线的距离为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOY中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0,直线l与x,y轴分别交于点A,B,点P是曲线C上任意一点.
(1)求弦OP的中点M的轨迹的直角坐标方程;
(2)求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知{an}为等差数列,若a1+a5+a9=5π,则cos(a2+a8)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线C:y2=2px(p>0)的焦点F,且斜率为$\frac{3}{4}$的直线交抛物线C与A,B两点,若$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(0<λ<1),λ=(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=ln(x),则f(e-2)等于(  )
A.-1B.-2C.-eD.-2e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别似乎a,b,c,且a=2,2cos2$\frac{B+C}{2}$+sinA=$\frac{4}{5}$.
(1)若b=$\frac{5\sqrt{3}}{3}$,求角B;
(2)求△ABC周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{x}{2}+6,x>10}\end{array}\right.$,若函数y=f2(x)-2bf(x)+b-$\frac{2}{9}$有6个零点,则b的取值范围是(  )
A.($\frac{2}{9}$,$\frac{1}{3}$)∪($\frac{2}{3}$,$\frac{7}{9}$)B.(-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞)C.(0,$\frac{1}{3}$)∪($\frac{2}{3}$,1)D.($\frac{2}{9}$,$\frac{7}{9}$)

查看答案和解析>>

同步练习册答案