精英家教网 > 高中数学 > 题目详情
18.已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 015项之和S2015等于(  )
A.1B.2 010C.4 018D.0

分析 通过写出数列{an}的前几项的值,找出数列的周期,进而可得结论.

解答 解:记该数列的通项为an,由题可知:
a1=2008,a2=2009,a3=1,
a4=-2008,a5=-2009,a6=-1,
a7=2008,a8=2009,a9=1,

∴数列{an}是以6为周期的周期数列,
且前6项和为:2008+2009+1-2008-2009-1=0,
∵2015=335×6+5,
∴S2015=335×0+(2008+2009+1-2008-2009)=1,
故选:A.

点评 本题考查数列的前n项和,找出数列的周期是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.计算:y=sinx-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,1),则下列结论正确的是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|C.$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$垂直D.$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.某日某省x个监测点数据统计如下:
空气污染指数(单位:μg/m3[0,50](50,100](100,150](150,200]
监测点个数1540y10
(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(2)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函数f(x)的图象上去定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使 f′(x0)=k恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=mx3-x+1在(-∞,+∞) 上是减函数的一个充分不必要条件是m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=2的斜率是(  )
A.0B.$\frac{1}{2}$C.+∞D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+m}$是定义在R上的奇函数.
(Ⅰ)求实数m的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知正实数a,b满足:a+b=2,记$\frac{1}{a}+\frac{1}{b}$的最小值m.设函数$f(x)=|x-t|+|x+\frac{1}{t}|(t≠0)$,若存在实数x,使得f(x)=m,则x的取值范围为(  )
A.[-1,1]B.[-2,2]C.[-1,0]D.[0,1]

查看答案和解析>>

同步练习册答案