精英家教网 > 高中数学 > 题目详情
11.A、B是120°二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

分析 由$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,利用向量法能求出CD的长.

解答 解:∵A、B是120°二面角α-l-β的棱l上的两点,
分别在α,β内作垂直于棱l的线段AC,BD,AB=AC=BD=1,
∴$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}$=($\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$)2
=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$+2$\overrightarrow{CA}•\overrightarrow{BD}$
=1+1+1-2×1×1×$\frac{1}{2}$
=2.
∴CD的长|$\overrightarrow{CD}$|=$\sqrt{2}$.
故选:C.

点评 本题考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.sin(-$\frac{23}{6}π$)+cos(-$\frac{π}{3}$)-tan$\frac{5}{4}π$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若z=(a-$\sqrt{2}$)+ai为纯虚数,其中a∈R,则$\frac{a+{i}^{7}}{1+ai}$=(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.0B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M为AB中点,将△CBM沿CM折起,使二面角B-CM-A的大小为$\frac{π}{3}$,则AB=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱柱ABC-A1BC1的底面是边长为2的正三角形,侧棱A1A⊥底面ABC,D为A1A的中点.
(Ⅰ)求证:平面B1DC⊥平面B1BCC1
(Ⅱ)若∠B1DC=90°,求点A到平面B1DC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,M为侧棱PD的三等分点(靠近D点),O为AC,BD的交点,且PO⊥面ABCD,PO=$\sqrt{6}$.
(1)若在棱PD上存在一点N,且BN∥面AMC,确定点N的位置,并说明理由;
(2)求点B到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形EFBC中,FB∥EC,BF⊥EF,且EF=$\frac{1}{2}$FB=$\frac{1}{3}$EC=1,A为线段FB的中点,AD⊥EC于D,沿边AD将四边形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(I)求证:BC⊥平面EDB;
(Ⅱ)求点M到平面BEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{4}$+y2=1,过它的左焦点引倾斜角为$\frac{π}{3}$的弦PQ,则PQ中点坐标为(-$\frac{12\sqrt{3}}{13}$,$\frac{3}{13}$).

查看答案和解析>>

同步练习册答案