精英家教网 > 高中数学 > 题目详情
16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则|$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.0B.$\sqrt{2}$C.2D.$\sqrt{3}$

分析 先根据|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),求出2$\overrightarrow{a}$•$\overrightarrow{b}$=1,再求出|$\overrightarrow{a}$+$\overrightarrow{b}$|2,问题得以解决.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴2$\overrightarrow{a}$•$\overrightarrow{b}$=1,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2=1+1+1=3,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,
故选:D.

点评 本题考查了向量的数量积运算和模的计算以及向量垂直的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若直线m⊥平面α,直线n⊥平面α,则m与n的位置关系是m∥n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}•\overrightarrow{b}$=$\frac{1}{2}$,则|$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.确定下列三角函数值的符号:
(1)sin(-556°12′);
(2)cos$\frac{16}{5}$π;
(3)tan(-$\frac{17}{8}$π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于x的方程102x-4×10x+2t=0有两不等实根,则$\frac{{t}^{2}+t+4}{t+1}$的取值范围是(  )
A.(0,3)B.(-∞,3]C.[3,+∞)D.[3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图(1),正三角形ABC边长为2a,CD是AB边上的高,E,F分别为AC和BC边上的中点,现将△ABC沿CD翻折成直二面角A-DC-B(如图(2))
(1)请判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角B-AC-D的大小;
(3)求点C到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.A、B是120°二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知三棱锥S-ABC,满足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若该三棱锥外接球的半径为$\sqrt{3}$,Q是外接球上一动点,则点Q到平面ABC的距离的最大值为$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点,
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于3?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案