【题目】在测试中,客观题难度的计算公式为
,其中
为第
题的难度,
为答对该题的人数,
为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
题号 | 1 | 2 | 3 | 4 | 5 |
实测答对人数 | |||||
实测难度 |
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量
,其中
为第
题的实测难度,
为第
题的预估难度
.规定:若
,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)见解析.
【解析】试题分析:(Ⅰ)根据表中数据,估计120人中有
人答对第5题.
(Ⅱ)根据古典概型计算得到
;
(Ⅲ)根据方差计算公式求解即可.
试题解析:
(Ⅰ)每道题实测的答对人数及相应的实测难度如下表:
题号 | 1 | 2 | 3 | 4 | 5 |
实测答对人数 | 8 | 8 | 7 | 7 | 2 |
实测难度 | 0.8 | 0.8 | 0.7 | 0.7 | 0.2 |
所以,估计120人中有
人答对第5题.
(Ⅱ)记编号为
的学生为
,从这5人中随机抽取2人,不同的抽取方法有10种.
其中恰好有1人答对第5题的抽取方法为
,
,
,
,
,
,共6种.
所以,从抽样的10名学生中随机抽取2名答对至少4道题的学生,恰好有1人答对第5题的概率为
.
(Ⅲ)
为抽样的10名学生中第
题的实测难度,用
作为这120名学生第
题的实测难度.
.
因为
,所以,该次测试的难度预估是合理的.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(Ⅰ)写出直线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设曲线
经过伸缩变换
得到曲线
,若点
,直线
与
交与
,
,求
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海州市六一儿童节期间在妇女儿童活动中心举行小学生“海州杯”围棋比赛,规则如下:甲、乙两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或赛满6局时比赛结束.设某校选手甲与另一选手乙比赛时,甲每局获胜的概率皆为
,且各局比赛胜负互不影响,已知第二局比赛结束时比赛停止的概率为
.
(1)求
的值;
(2)设
表示比赛停止时已比赛的局数,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动,其次在各公园签名的人中按分层抽样的方式抽取10名幸运之星,每人获得一个纪念品,其数据表格如下:
![]()
(Ⅰ)求此活动中各公园幸运之星的人数;
(Ⅱ)从乙和丙公园的幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(Ⅲ)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
![]()
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
附临界值表及公式:
,其中![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,设
为曲线
在点
处的切线,其中
.
(Ⅰ)求直线
的方程(用
表示);
(Ⅱ)求直线
在
轴上的截距的取值范围;
(Ⅲ)设直线
分别与曲线
和射线
(
)交于
,
两点,求
的最小值及此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,以上顶点和右焦点为直径端点的圆与直线
相切.
(1)求椭圆的标准方程;
(2)对于直线
和点
,椭圆
上是否存在不同的两点
与
关于直线
对称,且
,若存在实数
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校歌咏比赛中,甲班、乙班、丙班、丁班均可从
、
、
、
四首不同曲目中任选一首.
(1)求甲、乙两班选择不同曲目的概率;
(2)设这四个班级总共选取了
首曲目,求
的分布列及数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com