精英家教网 > 高中数学 > 题目详情

【题目】设函数y=x3与y=( x的图象的交点为(x0 , y0),若x0所在的区间是(k,k+1)(k∈Z),则k=

【答案】0
【解析】解:由于函数y=x3与y=( x的图象的交点为(x0 , y0),
∵( x>0,∴x3>0,∴x0>0.
函数f(x)=x3 ﹣( x的零点为x0
再根据f(1)= >0,f(0)=﹣1<0,f(1)f(0)<0,故f(x)的零点为x0∈(0,1),
可得k=0.
所以答案是:0.
【考点精析】关于本题考查的函数的零点与方程根的关系,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x﹣ x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F1F2分别是椭圆E ab0)的左、右焦点,过点F1的直线交椭圆EAB两点,|AF1|=3|BF1|,若cosAF2B=,则椭圆E的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=

(I)求椭圆C的标准方程;

(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若=0,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国.某选拔赛后,随机抽取100名选手的成绩,按成绩由低到高依次分为第1,2,3,4,5组,制成频率分布直方图如下图所示:

(I)在第3、4、5组中用分层抽样抽取5名选手,求第3、4、5组每组各抽取多少名选手;

(II)在(I)的前提下,在5名选手中随机抽取2名选手,求第4组至少有一名选手被抽取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的各项均为正数,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的关系:厂里的固定成本为2.8万元,每生产1百台的生产成本为1万元,每生产产品x(百台),其总成本为G(x)(万元)(总成本=固定成本+生产成本).如果销售收入R(x)= ,且该产品产销平衡(即生产的产品都能卖掉),请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,设直线与椭圆交于不同两点,且.若点满足,则=______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.

(Ⅰ)求椭圆的方程;

(Ⅱ)若轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案