精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列的各项均为正数,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和Sn.

【答案】(Ⅰ); (Ⅱ.

【解析】试题分析:Ⅰ)设出等比数列的公比q,由,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;
Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为的通项公式利用裂项求和即可.

试题解析:

(Ⅰ)设数列的公比为q,因为,则,即.

q>0,则.

因为,则,即,所以.

(Ⅱ)由题设, .

. (10分)

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四面体中, ,二面角的余弦值是,则该四面体外接球的表面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感市及周边地区的市民游玩又添新去处啦!孝感熙凤水乡旅游度假区于2017年10月1日正式对外开放.据统计,从2017年10月1日到10月7日参观孝感市熙凤水乡旅游度假区的人数如表所示:

日期

1日

2日

3日

4日

5日

6日

7日

人数(万)

11

13

8

9

7

8

10

(1)把这7天的参观人数看成一个总体,求该总体的众数和平均数(精确到0.1);

(2)用简单随机抽样方法从10月1日到10月4日中抽取2天,它们的参观人数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过1万的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=x3与y=( x的图象的交点为(x0 , y0),若x0所在的区间是(k,k+1)(k∈Z),则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x),当x∈(0,+∞)时的解析式为f(x)=﹣x2+4x﹣3.
(1)求这个函数在R上的解析式;
(2)作出f(x)的图象,并根据图象直接写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求函数f(x)的解析式,并说明函数的单调性;
(2)解不等式f(2x+1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知椭圆的焦距为 ,直线被椭圆 截得的弦长为 .

(1)求椭圆 的方程;

(2)设点是椭圆 上的动点,过原点引两条射线与圆分别相切,且的斜率存在. ①试问 是否为定值?若是,求出该定值,若不是,说明理由;

②若射线与椭圆 分别交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+
(1)判断f(x)的奇偶性并说明理由;
(2)当a=16时,判断f(x)在x∈(0,2]上的单调性并用定义证明;
(3)试判断方程x3﹣2016x+16=0在区间(0,+∞)上解的个数并证明你的结论.

查看答案和解析>>

同步练习册答案