如图1,四棱锥
中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:
平面
;
(2)线段
上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.![]()
(1)
,证得
.又因为
平面
推出
,
又
,所以
平面
.
(2)点
位于
点处,此时
;或
中点处,此时
.
解析试题分析:(1)【方法一】证明:由俯视图可得,
,所以
. 2分
又因为
平面
,所以
, 4分
又
,所以
平面
. 6分
(1)【方法二】证明:因为
平面
,
,建立如图所示
的空间直角坐标系
. 在△
中,易得
,所以
,![]()
因为
, 所以
,
.由俯视图和左视图可得:
.
所以
,
.
因为
,所以
. 3分
又因为
平面
,所以
,又
所以
平面
. 6分
(2)解:线段
上存在点
,使
与
所成角的余弦值为
.
证明如下:设
,其中
. 7分
所以
,
.
要使
与
所成角的余弦值为
,则有
, 9分
所以
,解得
或
,均适合
. 11分
故点
位于
点处,此时
;或
中点处,此时
, 12分
考点:三视图,立体几何中的垂直关系、距离的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。本题将三视图与证明、计算问题综合考查,凸显三视图的基础地位,必须正确还原几何体。
科目:高中数学 来源: 题型:解答题
已知在四棱锥
中,底面
是边长为2的正方形,侧棱
平面
,且
,
为底面对角线的交点,
分别为棱
的中点![]()
(1)求证:
//平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,
的直径AB=4,点C、D为
上两点,且
CAB=45°,
DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF
平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG
平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2![]()
(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。![]()
(1)求证:AD⊥PB;
(2)求异面直线PD与AB所成角的余弦值;
(3)求平面PAB与平面PCD所成锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
.![]()
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,已知AB=3, AD=1, E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:![]()
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G ⊥D F。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
为正方形
的中心,四边形
是平行四边形,且平面
平面
,若
.![]()
(1)求证:
平面
.
(2)线段
上是否存在一点
,使
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com