精英家教网 > 高中数学 > 题目详情

如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2

(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。

(1)要证明CF∥面ABE;通过平行四边形的性质得到CF∥AG得到
(2)要证明面ABE⊥平面BDE,先根据题意分析得到⊥面BDE,然后根据面面垂直的判定定理得到。
(3)

解析试题分析:解:(Ⅰ)证明:取BE的中点G,连FG∥,AC∥,四边形为平行四边形,故CF∥AG, 即证CF∥面ABE  3分

(Ⅱ)证明:△ECD为等边三角形,得到CF⊥ED又CF⊥BDCF⊥面BDE
而CF∥AG ,故⊥面BDE,
平面ABE,平面ABE ⊥平面BDE  7分
(Ⅲ)由CF⊥面BDE,面BDE,所以
考点:空间中的平行和垂直证明以及体积的计算
点评:主要是考查了空间中的线面平行和面面垂直的证明,以及体积计算,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


几何体EFG —ABCD的面ABCD,ADGE,DCFG均为矩形,AD=DC=l,AE=

(I)求证:EF⊥平面GDB;
(Ⅱ)线段DG上是否存在点M使直线BM与平面BEF所成的角为45°,若存在求等¥ 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,面为正方形,面为等腰梯形,,,,.

(1)求证:;
(2)求三棱锥的体积;
(3)线段上是否存在点,使//平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(1)证明:平面
(2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

边长为2的正方形ABCD所在平面外有一点P,平面ABCD,,E是PC上的一点.
 
(Ⅰ)求证:AB//平面
(Ⅱ)求证:平面平面
(Ⅲ)线段为多长时,平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,矩形所在的平面和圆所在的平面互相垂直,且.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案