精英家教网 > 高中数学 > 题目详情

已知直三棱柱的三视图如图所示,的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

(Ⅰ)根据三视图知:三棱柱是直三棱柱,连结,交于点,连结.由 是直三棱柱,得四边形为矩形,的中点,又中点,所以中位线,所以 所以 ∥平面
(Ⅱ)(Ⅲ)为线段中点

解析试题分析:(Ⅰ)证明:根据三视图知:三棱柱是直三棱柱,连结,交于点,连结.由 是直三棱柱,
得四边形为矩形,的中点.
中点,所以中位线,所以 ,    2分
因为 平面平面
所以 ∥平面.            4分
(Ⅱ)解:由是直三棱柱,且,故两两垂直.
如图建立空间直角坐标系.                          5分

,则.
所以  
设平面的法向量为,则有
所以  取,得.            6分
易知平面的法向量为.
由二面角是锐角,得 .
所以二面角的余弦值为.          8分
(Ⅲ)解:假设存在满足条件的点.
因为在线段上,,故可设,其中.
所以 .               9分
因为角         10分
所以,解得,舍去.
所以当点为线段中点时,角.  &n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求异面直线所成的角的余弦值
(2)求二面角的余弦值
(3)点到面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体中,⊥平面⊥平面 ,的中点.

(1)求证:⊥平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,平面⊥平面,四边形是直角梯形,分别为的中点.

(Ⅰ) 用几何法证明:平面
(Ⅱ)用几何法证明:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是直角梯形,,侧面为正三角形,.如图所示.

(1) 证明:平面
(2) 求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2

(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面平面,△为等边三角形,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案