如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且
(1)求三棱锥D-ABC的表面积;
(2)求证AC⊥平面DEF;
(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(1)
(2)先证EF⊥AC,再证DE⊥AC,即可证AC⊥平面DEF
(3)存在这样的点N,当CN=时,MN∥平面DEF.
解析试题分析:
解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC= a.设G为CD的中点,则CG= a,AG=a.∴S△ABC=S△ABD=a2,S△BCD=a2,S△ACD=a2.三棱锥D-ABC的表面积为S△ACD=
(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.
(3)存在这样的点N,当CN=CA时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=•CA=CA.
考点:棱锥的结构特征
点评:本题考查棱锥的结构特征,证明线面垂直,线面平行,考查逻辑思维能力,是中档题.
科目:高中数学 来源: 题型:解答题
已知直三棱柱的三视图如图所示,是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
边长为2的正方形ABCD所在平面外有一点P,平面ABCD,,E是PC上的一点.
(Ⅰ)求证:AB//平面;
(Ⅱ)求证:平面平面;
(Ⅲ)线段为多长时,平面?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
AB为圆O的直径,点E、F在圆上,AB//EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求证:BF⊥平面DAF;
(II)求ABCD与平面CDEF所成锐二面角的某三角函数值;
(III)求多面体ABCDFE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)若M为线段EF的中点,设平面MAB与平面FCB所成角为,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com