精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分别为线段PDBC的中点.

(Ⅰ) 求证:CE∥平面PAF
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.

(Ⅰ)先证明EC∥HF即可              (Ⅱ)存在

解析试题分析:(1)取PA中点为H,连结CE、HE、FH,
因为H、E分别为PA、PD的中点,所以HE∥AD,,
因为ABCD是平行四边形,且F为线段BC的中点 , 所以FC∥AD,
所以HE∥FC, 四边形FCEH是平行四边形 ,所以EC∥HF
又因为   
所以CE∥平面PAF.        
(2)因为四边形ABCD为平行四边形且∠ACB=90°,

所以CA⊥AD ,又由平面PAD⊥平面ABCD可得 CA⊥平面PAD , 
所以CA⊥PA , 由PA=AD=1,PD=可知,PA⊥AD,                   
所以可建立如图所示的平面直角坐标系A-xyz, 因为PA=BC=1,AB=所以AC="1" .     
所以.
假设BC上存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°,
设点G的坐标为(1,a,0),    所以
设平面PAG的法向量为
 所以
设平面PCG的法向量为
所以 ,       
因为平面PAG和平面PGC所成二面角的大小为60°,所以
  所以所以
所以线段BC上存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°.
点G即为B点.
考点:直线与平面平行  二面角
点评:本题考查线面平行,考查面面角,考查学生的计算能力,正确作出面面角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,已知AB=3, AD=1, E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:

(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G ⊥D F。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为正方形的中心,四边形是平行四边形,且平面平面,若.

(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案