精英家教网 > 高中数学 > 题目详情

如图所示,平面⊥平面,四边形是直角梯形,分别为的中点.

(Ⅰ) 用几何法证明:平面
(Ⅱ)用几何法证明:平面

(1)利用三角形的中位线的性质,先证明四边形ODBF是平行四边形,从而可得OD∥FB,利用线面平行的判定,可以证明OD∥平面ABC;(2)利用平面ABDE⊥平面ABC,证明BD⊥平面ABC,进而可证平面ABDE;

解析试题分析:(Ⅰ)证明:取中点,连结. ∵的中点,的中点,
, 又

∴四边形是平行四边形.
                    4分
又∵平面平面
平面.             6分
(Ⅱ)证明:中点,∴, 8分
又∵面⊥面,面
.       12分
考点:线面平行,线面垂直
点评:本题考查线面平行,考查线面垂直,考查线面角,解题的关键是正确运用线面平行与垂直的判定与性质,正确运用向量法求线面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角梯形ABCD中,AD//BC,,,如图(1).把沿翻折,使得平面,如图(2).

(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(Ⅲ)在线段上是否存在点N,使得?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)求四棱锥P—ACDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直三棱柱的三视图如图所示,的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,面为正方形,面为等腰梯形,,,,.

(1)求证:;
(2)求三棱锥的体积;
(3)线段上是否存在点,使//平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面.

查看答案和解析>>

同步练习册答案