如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
解析试题分析:先作出二面角的平面角。由面面垂直可得线面垂直,作SD⊥平面ACB,然后利用三垂线定理作出二面角的平面角
解:过S点作SD⊥AC于D,过D作DM⊥AB于M,连SM
∵平面SAC⊥平面ACB
∴SD⊥平面ACB
∴SM⊥AB
又∵DM⊥AB
∴∠DMS为二面角S-AB-C的平面角
在ΔSAC中SD=4×
在ΔACB中过C作CH⊥AB于H
∵AC=4,BC=
∴AB=
∵S=1/2AB·CH=1/2AC·BC
∴CH=
∵DM∥CH且AD=DC∴DM=1/2CH=
∵SD⊥平面ACB DMÌ平面ACB∴SD⊥DM
在RTΔSDM中SM===
∴cos∠DMS===
考点:二面角的平面角
点评:主要是考查了二面角的平面角的求解的运用,属于基础题。
科目:高中数学 来源: 题型:解答题
已知在四棱锥中,底面是边长为2的正方形,侧棱平面,且, 为底面对角线的交点,分别为棱的中点
(1)求证://平面;
(2)求证:平面;
(3)求点到平面的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,的直径AB=4,点C、D为上两点,且CAB=45°,DAB=60°,F为弧BC的中点.沿直径AB折起,使两个半圆所在平面互相垂直,如图2.
(I)求证:OF平面ACD;
(Ⅱ)求二面角C—AD—B的余弦值;
(Ⅲ)在弧BD上是否存在点G,使得FG平面ACD?若存在,试指出点G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2
(1)求证:CF∥面ABE;
(2)求证:面ABE⊥平面BDE:
(3)求三棱锥F—ABE的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在矩形ABCD中,已知AB=3, AD=1, E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G ⊥D F。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com