精英家教网 > 高中数学 > 题目详情

已知是正方形,⊥面,且是侧棱的中点.

(1)求证∥平面
(2)求证平面平面
(3)求直线与底面所成的角的正切值.

(1)关键是证明(2)先证明(3)

解析试题分析:本题(1)问,由中位线得,再由平行线的传递性得,然后结合定理在说明清楚即可;
第(2)问,关键是证明,再结合,就可证明
平面平面
第(3)问,由于,则为直线与平面所成角,结合三角函数可求出其正切值。
解:(1) 
, 又

(2)
,又

(3)
即直线与平面所成角


考点:直线与平面所成的角;直线与平面平行的判定;平面与平面垂直的判定.
点评:本题考查线面平行,考查面面垂直,考查线面角,考查学生分析解决问题的能力,掌握线面平行,面面垂直的判定方法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,

(Ⅰ)求证:平面平面
(Ⅱ)若所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱的侧棱长为3,,且分别是棱上的动点,且
(1)证明:无论在何处,总有
(2)当三棱柱.的体积取得最大值时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2.

(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, .

(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

同步练习册答案