精英家教网 > 高中数学 > 题目详情
14.盒中装有形状,大小完全相同的5个小球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

分析 先求出基本事件总数n=${C}_{5}^{2}=10$,再求出所取出的2个球颜色不同包含的基本事件个数m=${C}_{2}^{1}{C}_{3}^{1}$=6,由此能求出所取出的2个球颜色不同的概率.

解答 解:盒中装有形状,大小完全相同的5个小球,其中红色球3个,黄色球2个,
从中随机取出2个球,
基本事件总数n=${C}_{5}^{2}=10$,
所取出的2个球颜色不同包含的基本事件个数m=${C}_{2}^{1}{C}_{3}^{1}$=6,
所取出的2个球颜色不同的概率等于p=$\frac{m}{n}$=$\frac{6}{10}=\frac{3}{5}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c.设向量$\overrightarrow{m}$=(a-c,a-b),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求∠B;
(Ⅱ)若M是BC的中点,且AM=AC,求sin∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C:$\frac{{x}^{2}}{2}$+y2=1的上、下顶点分别为M,N点,P在椭圆C外,直线PM交椭圆于点A,若PN⊥NA,则点P的轨迹方程是(  )
A.y=x2+1(x≠0)B.y=x2+3(x≠0)
C.y2-$\frac{{x}^{2}}{2}$=1(y>0,x≠0)D.y=3(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,网格纸上小正方形的边长为1,图中粗线画出的是某零件的三视图,该零件由一个底曲直径为4,高为4的圆柱体毛坯切削得到,削切削掉部分的体积与原毛坯体积的比值为(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{5}{12}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某人经营一个抽奖游戏,顾客花费4元钱可购买一次游戏机会,毎次游戏,顾客从标有1、2、3、4的4个红球和标有2、4的2个黑球共6个球中随机摸出2个球,并根据模出的球的情况进行兑奖,经营者将顾客模出的球的情况分成以下类别:
A.两球的顔色相同且号码相邻;
B.两球的颜色相同,但号码不相邻;
C.两球的顔色不同.但号码相邻;
D.两球的号码相同
E.其他情况
经营者打算将以上五种类别中最不容易发生的一种类別对应一等奖,最容易发生的一种类别对应二等奖.其它类别对应三等奖
(1)一、二等奖分别对应哪一种类别(用宇母表示即可)
(2)若中一、二、三等奖分别获得价值10元、4元、1元的奖品,某天所有顾客参加游戏的次数共计100次,试估计经营者这一天的盈利.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),则(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数f(x)=2(a-1)ln(ex-1)+ex,g(x)=(4a-2)x,其中a为常数(a>$\frac{1}{2}$),f′(x)为函数f(x)的导函数.
(Ⅰ)当a=$\frac{3}{2}$时,证明f′(x)≥4;
(Ⅱ)当a=$\frac{3}{2}$时,x0满足f(x0)=4x0,证明:当x>x0时,f(x)>4x;
(Ⅲ)设x1,x2分别是函数h(x)=f(x)-g(x)的极大值点和极小值点,且x2-x1>ln2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.中心在原点,焦点在x轴上的椭圆C过点K(0,$\sqrt{2}$),离心率e=$\frac{\sqrt{2}}{2}$,点M($\frac{2}{3}$,$\frac{2}{3}$)在椭圆C内,椭圆C上两点A,B满足$\overrightarrow{AM}$=$\overrightarrow{MB}$.
(1)求椭圆C的方程;
(2)求直线AB的斜率;
(3)直线OM与椭圆C交于R,S两点,分别过A,B作椭圆C的切线l1,l2,直线l1,l2交于点P.求证:O,M,P三点共线且S△AOR•S△BOS=S△AOM•S△BOP

查看答案和解析>>

同步练习册答案