ÒÑÖªÊýÁÐ{an} µÄ¸÷Ïî¾ùΪÕýÊý£¬¼ÇA£¨n£©=a1+a2+ ¡­¡­+an£¬B£¨n£©=a2+a3+ ¡­¡­+an+1£¬C£¨n£©=a3+a4+ ¡­¡­+an+2£¬n=1 £¬2 £¬¡­¡­ ¡£
£¨1£©Èôa1=1 £¬a2=5 £¬ÇÒ¶ÔÈÎÒân¡ÊN©~£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an} µÄͨÏʽ£¬
£¨2£©Ö¤Ã÷£ºÊýÁÐ{an} Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ£º¶ÔÈÎÒ⣬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁС£
½â£º£¨1£©¶ÔÈÎÒ⣬Èý¸öÊýÊǵȲîÊýÁУ¬
ËùÒÔ
¼´Ò༴
¹ÊÊýÁÐÊÇÊ×ÏîΪ1£¬¹«²îΪ4µÄµÈ²îÊýÁÐ
ÓÚÊÇ¡£
£¨2£©¢Ù±ØÒªÐÔ£ºÈôÊýÁÐÊǹ«±ÈΪµÄµÈ±ÈÊýÁУ¬Ôò¶ÔÈÎÒ⣬
ÓÐ
ÓÉÖª£¬¾ù´óÓÚ0£¬
ÓÚÊÇ

¼´£½£½£¬
ËùÒÔÈý¸öÊý×é³É¹«±ÈΪµÄµÈ±ÈÊýÁС£
¢Ú³ä·ÖÐÔ£ºÈô¶ÔÓÚÈÎÒ⣬Èý¸öÊý×é³É¹«±ÈΪµÄµÈ±ÈÊýÁУ¬
Ôò£¬ÓÚÊǵÃ
¼´
ÓÉÓм´£¬
´Ó¶ø
ÒòΪ£¬ËùÒÔ£¬
¹ÊÊýÁÐÊÇÊ×ÏîΪ£¬¹«±ÈΪµÄµÈ±ÈÊýÁУ¬
×ÛÉÏËùÊö£¬ÊýÁÐÊǹ«±ÈΪµÄµÈ±ÈÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ£º¶ÔÈÎÒân¡ÊN©~£¬Èý¸öÊý×é³É¹«±ÈΪµÄµÈ±ÈÊýÁС£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn+
an2
=3£¬n¡ÊN*
£¬ÓÖbnÊÇanÓëan+1µÄµÈ²îÖÐÏÇó{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=n-2an-34£¬n¡ÊN+
£¨1£©Ö¤Ã÷£º{an-1}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{Sn}µÄͨÏʽ£¬²¢Çó³öʹµÃSn+1£¾Sn³ÉÁ¢µÄ×îСÕýÕûÊýn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•¼Î¶¨Çø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄͨÏîΪan=2n-1£¬SnÊÇ{an}µÄǰnÏîºÍ£¬Ôò
lim
n¡ú¡Þ
a
2
n
Sn
=
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•³¤ÄþÇøÒ»Ä££©ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=5-4¡Á2-n£¬ÔòÆäͨÏʽΪ
an=
3(n=1)
4
2n
(n¡Ý2)
an=
3(n=1)
4
2n
(n¡Ý2)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄµÝÍÆ¹«Ê½Îª
a1=2
an+1=3an+1
£¬bn=an+
1
2
£¨n¡ÊN*£©£¬
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸