精英家教网 > 高中数学 > 题目详情
16.下列函数中,既是奇函数又是减函数的是(  )
A.$y=\frac{1}{x}$B.y=-tanxC.$y=\frac{{1-{2^x}}}{{1+{2^x}}}$D.y=-x3(-1<x≤1)

分析 根据函数奇偶性 单调性的性质分别进行判断即可.

解答 解:A.y=$\frac{1}{x}$在定义域上不是单调函数,
B.y=-tanx在定义域上不是单调函数,
C.f(-x)=$\frac{1{-2}^{-x}}{1{+2}^{-x}}$=-$\frac{1{-2}^{x}}{1{+2}^{x}}$=-f(x),则函数为减函数,
f(x)=$\frac{1{-2}^{x}}{1{+2}^{x}}$=$\frac{2-(1{+2}^{x})}{1{+2}^{x}}$=$\frac{2}{1{+2}^{x}}$-1,则函数f(x)为减函数,满足条件.
D.定义域关于原点不对称,为非奇非偶函数,
故选:C.

点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.请将下面各图中的阴影部分用集合表示:

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={y|y=x2+2x,(x∈R)},集合B={x|x2-x-6≤0},则A∩B=(  )
A.[1,3]B.[-1,3]C.[-1,+∞)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果关于x的方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数(  )
A.2B.1C.0D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足不等式组$\left\{\begin{array}{l}x-2≤0\\ y-1≤0\\ x+2y-2≥0\end{array}\right.$,则目标函数z=x-2y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线a,b的方向向量分别为$\overrightarrow{e}$=(1,-2,-2),$\overrightarrow{n}$=(-2,-3,2),则a与b的位置关系是(  )
A.平行B.重合C.垂直D.夹角等于$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在 (-∞,0)∪(0,+∞)上的 奇函数f(x)满足,x>0时f(x)为函数y=2x的反函数,则f(-2)=(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x2-ax+1在区间($\frac{1}{2}$,3)上有零点,则实数a的取值范围是$[{2,\frac{10}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若实数a满足f(f(a))=1,则实数a的所有取值的和为(  )
A.1B.$\frac{17}{16}$-$\sqrt{5}$C.-$\frac{15}{16}$-$\sqrt{5}$D.-2

查看答案和解析>>

同步练习册答案