如图,是的内接三角形,PA是圆O的切线,切点为A,PB交AC于点E,交圆O于点D,PA=PE,,PD=1,DB=8.
(1)求的面积;
(2)求弦AC的长.
(1);(2).
解析试题分析:本题主要考查圆的切线的性质、切割线定理、勾股定理、三角形面积公式、相交弦定理等基础知识,考查学生的分析问题解决问题的能力、逻辑推理能力、计算能力.第一问,先利用切线的性质得到,所以,,所以由切割线定理有,所以利用三角形面积求△的面积为;第二问,在△中,利用勾股定理得,,再由相交弦定理得出.
(1)因为是⊙的切线,切点为,
所以, 1分
又,所以, 2分
因为,,所以由切割线定理有,所以, 4分
所以△的面积为. 5分
(2)在△中,由勾股定理得 6分
又, ,
所以由相交弦定理得 9分
所以,故. 10分
考点:圆的切线的性质、切割线定理、勾股定理、三角形面积公式、相交弦定理.
科目:高中数学 来源: 题型:解答题
如图,已知圆内接四边形,切圆于点,且与四边形对角线延长线交于点,切圆O于点,且与延长线交于点,延长交于点,若.
(1)求证:;
(2)求证:四点共圆.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,PA切圆O于点A,割线PBC交圆O于点B、C,∠APC的角平分线分别与AB、AC相交于点D、E,求证:
(1)AD=AE;
(2)AD2=DB·EC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线于点,过点作圆的切线,切点为.
(1)求证:四点共圆;(2)若,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com