精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且.

Ⅰ)求椭圆的离心率;

Ⅱ)若过三点的圆恰好与直线 相切,求椭圆的方程;

III)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由

【答案】123

【解析】试题分析:(1)设,由,所以,由于,即的中点,故,即,于是,于是的外接圆圆心为,半径,该圆与直线相切,则,即可得出值,从而可求椭圆的方程;

(2)由(1)可知,设,联立方程组,整理得,写出韦达定理,由于菱形的对角线垂直,故, 即,即,由已知条件知,所以,即可求出的取值范围.

试题解析:

(1)设,由

,因为,所以

由于,即的中点,

,所以,即

于是,于是的外接圆圆心为,半径

该圆与直线相切,则,解得

所以,所求椭圆的方程为.

(2)由(1)可知

,联立方程组,整理得

,则

由于菱形的对角线垂直,故,

,即

由已知条件知

所以,所以

故存在满足题意的点,且的取值范围是

当直线的斜率不存在时,不合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在 中,角 的对边分别是 ,且有 .
(1)求
(2)若 ,求 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列 中, ,数列 中, .
(1)求数列 的通项公式;
(2)若 ,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11an13an1.

(1)证明是等比数列并求{an}的通项公式;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数().

(Ⅰ)当时,解不等式

(Ⅱ)证明:方程最少有1个解,最多有2个解,并求该方程有2个解时实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角A,B,C的对边分别为abc,且B为钝角,

(1);(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为矩形, 平面 ,点的中点.

)求证: 平面

)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求对称轴是轴,焦点在直线上的抛物线的标准方程;

(2)过抛物线焦点的直线它交于两点,求弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足.

(1)求

(2)先猜想出的一个通项公式,再用数学归纳法证明你的猜想.

查看答案和解析>>

同步练习册答案