精英家教网 > 高中数学 > 题目详情
5.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
试从上述五个式子中选择一个,求出这个常数;并根据你的计算结果,将该同学的发现推广为三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.

分析 选择②式,由倍角公式及特殊角的三角函数值即可得解,发现推广三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.

解答 解:选择②式,计算如下:
sin215°+cos215°-sin 15°cos 15°=1-$\frac{1}{2}$sin 30°=1-$\frac{1}{4}$=$\frac{3}{4}$
推广为三角恒等式三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.
故答案为:sin2α+cos2(30°-α)-sin αcos(30°-α)=$\frac{3}{4}$.

点评 本题主要考查了三角函数中的恒等变换应用,归纳推理,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知关于x的函数y=loga(2-ax)在[1,2]上是增函数,则a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,则下列结论正确的序号是①②④.
①DC1⊥D1P
②平面D1A1P⊥平面A1AP
③∠APD1的最大值为90°
④AP+PD1的最小值为$\sqrt{2+\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系x0y中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过(0,1),且离心率e=$\frac{{\sqrt{2}}}{2}$,
(1)求椭圆方程.
(2)经过点(0,$\sqrt{2})$且斜率k的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)有两个不同的交点P和Q.
①求k的取值范围.
②设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{AB}$共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|x2-5x-6=0},B={x|y=log2(2-x)},则A∩(∁RB)=(  )
A.{2,3}B.{-1,6}C.{3}D.{6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正项等比数列{an}满足:a6+2a5=15a4,若存在两项am,an使得$\sqrt{{a_m}{a_n}}=3{a_1},则-m+\frac{12}{n}$的最小值为(  )
A.4B.3C.$4\sqrt{3}-4$D.$4-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求函数y=log$\frac{1}{3}$(x2-4x+3)的单调区间.减区间为(3,+∞);增区间为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)对于任意的x∈R,都有f(x)+f(-x)=0恒成立,且当x>0时,f(x)=$\frac{2}{3}$sin2x+cosx,则当x<0时,f(x)=(  )
A.$\frac{2}{3}$sin2x+cosxB.-$\frac{2}{3}$sin2x+cosxC.$\frac{2}{3}$sin2x-cosxD.-$\frac{2}{3}$sin2x-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有一个几何体的三视图如图所示,则该几何体的体积为(  )
A.24B.20C.16D.48

查看答案和解析>>

同步练习册答案